More on the meta mode: In search of deeper explanations for the role of consciousness in second language learning

Mike Sharwood Smith

Heriot-Watt University
Edinburgh, U.K.

Abstract

Thirty years of research has not produced hard evidence that making people aware of formal features of the L2 has any significant effect on their grammatical development. Even though people still have a persistent feeling that conscious learning and conscious use of language must in some way help, the ways in which these do so are not immediately apparent. Is it, for example, only in the area of ‘vocabulary’? Is it really only in the way Krashen has described in his Monitor Model? We still say and know little about the mechanisms involved. The model discussed in this paper suggests that learners can develop a separate metagrammar which provides them with a serious alternative or complementary language facility for handling the L2 use. This complementary facility is not possessed by the very young L1 acquirer but is possessed by the older, and especially the literate L1 user so that, if we can now talk coherently about ‘linguistic’ and ‘metalinguistic fluency’, we can elaborate further on the possible conflicts that may occur in given areas between the two systems and how one complements or replaces the other.

Keywords: metalinguistic, grammar, second language acquisition, consciousness, learning, fluency

1. Overview

A question that still excites controversy in all issues associated with language learning concerns the precise role of conscious awareness. In particular, people
have debated whether we are able, using conscious analysis and manipulation of linguistic structures to facilitate the development of our mastery over a new language. Put more distinctly, is understanding grammar necessary for its acquisition? Whereas a similar question would seem ridiculous when talking of a subject like history since, of course, knowledge of history presupposes at least some degree of understanding, the question is not at all ridiculous when one considers the fact that a mere child can master the grammar of its mother tongue without the slightest inkling of how the grammar is put together or indeed what language really is. Clearly in this case and with this type of learner, understanding, in the normal sense of understanding, i.e. conscious, analytic understanding, is irrelevant.

The discussion that follows will begin by looking at attitudes to this use of conscious awareness in the early days of SLA (second language acquisition) research. The perspective will then be widened to consider the types of issue a comprehensive theory of SLA should cover and this will lead in to a brief introduction of a model, dubbed ‘MOGUL’, being developed to facilitate a cross-disciplinary approach to the ‘big issues’ (Truscott and Sharwood Smith 2004). This is necessary before narrowing down the focus to how this model explains the use of metalinguistic knowledge, the kind of systematised, conscious understanding that people, particularly as adults, build up during acquisition for any new language we are attempting to acquire. The state of attending consciously to the properties of the language we are using is termed the ‘meta’ mode following Sharwood Smith (1994). The general aim is to look at the old issues again and to pave the way for more rigorously formulated explanations.

2. The early days of SLA

2.1 Dual knowledge: The essentials

What Tarone (1983, 1990) has critically referred to as the ‘dual knowledge’ hypothesis lies at the heart of the distinction, acknowledged in many areas of philosophy and psychology, between knowing something and knowing about something, that latter sometimes referred to as metacognition (see also Schwartz 1986, 1999). Tarone, however, was referring to Krashen’s conscious/subconscious learning distinction which had such an impact in the nineteen-seventies both within SLA and, later, in many parts of the wider language teaching community. The essentials of this theory, as I interpret them, were as follows (Krashen 1985):

1 See also papers at http://www.hw.ac.uk/langWWW/mogul/
(1) Conscious learning leads to ‘technical’ knowledge about the target language (here called ‘metalinguistic’ knowledge)

(2) Exposure to language while attempting simply to understand L2 utterances leads naturally to the development of intuitive, subconscious knowledge

(3) Using conscious knowledge (Krashen’s version of operating in the meta mode) requires a processing mechanism dubbed the ‘Monitor’.

(4) The Monitor is a grammatical ‘first aid kit’ which operates on spontaneously produced language (before or after it is uttered)

(5) Conscious knowledge of the language is necessarily limited and linguistically unsophisticated (for most learners apart from academic linguists)

(6) Conscious knowledge is available only for non-spontaneous use since it requires extra time to deploy and a focus on the form of the utterance as opposed to just its meaning

(7) Learners, or particular types of learner, may not choose to resort to conscious knowledge even in optimal circumstances, i.e. those when they have ample time and are able in principle to focus on the form rather than the message (meaning).

Despite its value in ‘tidying up’ erroneous utterances, the Monitor, which was, incidentally, chiefly discussed as a production rather than comprehension mechanism, was deemed to be so limited that the conclusions to be drawn for language learners (and language teachers) might be summed up as follows:

- Don’t learn grammar. Throw away the grammar book: it’s of no use
- By all means, try to learn vocabulary
- The grammar will take care of itself if you just focus on communication
- Stop worrying about correctness and just listen and try to understand as best you can.

2.2 The conundrum

The debates about the Monitor model of the seventies were, for SLA researchers at least, inconclusive. Although the issue was clearly a crucial one, people had conflicting thoughts about it and these conflicts remained unresolved.

Whereas Krashen could have made full use of the thinking of the time in generative linguistics as far as subconscious knowledge of language was concerned – in fact this task was left for Schwartz (1986) to do – he could not say what conscious learning really involved. ‘Monitor’ Theory was a very interesting but sketchy claim about how we gain and use conscious knowledge
and it was substantiated only by a bare minimum of hard evidence. Moreover the rest of the theory also lacked explanatory force. Developmental sequences that were pointed to as indicators of the subconscious were 'magic': no explanation was forthcoming at the time (but see Zobl and Liceras 1994). On the other hand, it must be said that Krashen’s claims were relevant and coherent and therefore they posed useful challenges for researchers (Sharwood Smith 1994).

3. General goals for a theory of second language acquisition

To fully explain language acquisition, the following issues (at least) need to be covered, the last four of which will be taken up later in this discussion.

(a) What are the linguistic properties of the new language being developed? To answer this we need a good linguistic theory or compatible set of theories which can yield answers that can serve the purposes of acquisition research.

(b) Where do these properties come from? How does the learner come to acquire them? This is more the realm of acquisition theory per se and specifically one which explains how language ‘data’ outside the learner interacts with internal mechanisms and any pre-existing knowledge in the course of development.

(c) How do learners control (on-line) their current L2 system at any given stage of development? In teaching terms, this has to do with their degree of ‘fluency’ as opposed to their feeling for what is correct. This requires an understanding of the on-line processing of language, the way learners control their current mental model of L2 to produce and comprehend L2 utterances and L2 text.

(d) How and why does development of the properties of the learner’s linguistic systems unfold over time? What stages do they go through and are these stages optional or obligatory? Like (b), this relates to the realm of language acquisition theory but the focus here is more exclusively on the learners’ internal mechanisms.

(e) How and why does ‘fluency’ unfold over time alongside the other aspects of development? This has to do with the development from an on-line processing perspective.

(f) What ‘metalinguistic’ knowledge does the learner develop?

(g) What is it about the learner’s L2 experience that triggers changes in L2 linguistic and metalinguistic knowledge?

(h) What role does metalinguistic ability play in determining learner performance at any given moment in their development?
(i) What role does metalinguistic ability play in determining the development of L2 knowledge?

4. The big picture: UGC introduced

The need for a wider perspective on language acquisition and general multilingual ability is often voiced. The so-called ‘MOGUL’ model developed by Sharwood Smith and Truscott is one attempt to frame this perspective in theoretical terms that will allow input from as many relevant neighbouring disciplines as possible. It started out as a study of the role of attention and consciousness in the way learners process L2 ‘input’ and it has developed into a more ambitious theoretical platform with specific theoretical claims (Truscott and Sharwood Smith 2004). For the architecture of the language faculty and the relationships between language and other cognitive domains, MOGUL builds on structure-constrained modularity (SCM), an approach developed by Ray Jackendoff which incorporates such notions as UG (Chomsky’s Universal Grammar) and learnability theory, part and parcel of much generative linguistic theorising today (Jackendoff 2001). These notions are incorporated in ways that lend themselves precisely to such broader relationships. One might term it ‘linguistics with a foreign policy’.

For the way the various cognitive domains function with regard to attention and awareness, MOGUL builds on Global Workspace theory as advanced over the last 15 years by Bernard Baars and associates (Baars 1988, 1997, Newman and Baars 1993).

4.1 Empirical and theoretical support

Jackendoff’s ‘processing friendly’ model is broadly speaking in line with much generative linguistic theorising and also with a body of empirical psycholinguistic research. Moreover, other approaches to language acquisition use Jackendoff, notably Carroll’s Autonomous Induction Theory (Carroll 1999, 2001). The Global Workspace idea has gained broad acceptance in cognitive scientific debates on attention and consciousness and has included a body of research into its neurological underpinnings (Newman and Baars 1999). Jackendoff’s Structure-Constrained Modularity and Baars’ model are very broadly compatible, while they focus on different relevant aspects of the whole picture.\(^2\) MOGUL is an extrapolation of both these frameworks bringing with it, inevitably, some changes and adaptations which need not be discussed here.

\(^2\) Jackendoff in fact has his own account of consciousness (Jackendoff 1987, 1997).
4.2 MOGUL summarised

To explain how MOGUL approaches the problem of metalinguistic knowledge, let us first look at the framework as a whole from a processing point of view. The mind may be conceived of as populated by a large array of ‘processors’, that is, specialised mechanisms that are there to handle specific problems swiftly and automatically. Whatever theory about mental abilities we choose to adopt, it has to explain both our ability to do certain things swiftly, efficiently and mindlessly, i.e. while focussing on something else, and also our ability to cope with novel situations and construct solutions to problems we have not yet encountered. It also has to explain, and this remains a formidable challenge, how and why we engage in thinking activities where we are fully aware of a series of decisions we are making in order to attain some goal and, in other cases, how and why we do things without ever having any access to the workings of our own minds. As we speak, for example, we engage in conscious processes of which we are, by definition, quite aware, but we can never, even if we devote all our attention to the task, gain access to how we process the variations in air pressure that our ears pick up and convert them into intelligible speech or where in our heads the prepositions are stuck swiftly on to noun phrases and come out as prepositional phrases, themselves embedded neatly in other more complex structures. All we can do is ponderously analyse it all after the event.

Following Jackendoff, and in the spirit of standard thinking in generative linguistics, certain processors develop of their own accord and from a very early age to help us cope with the environment before we have time to learn new skills. This, for example, enables the young child to acquire its mother tongue without having to study it. One of the characteristics of such processing subsystems, or ‘modules’, is that they deal with very particular kinds of structures: they can be said to have their own code. Hence the phonological processor deals only in phonological code and cannot process anything else, including structure from its sister syntactic processing module. This constraint is in fact an enormous advantage because it can process swiftly and blindly just one kind of input without taking anything else into consideration. It processes incoming input that it recognises and builds structures in the same code which ‘outputs’. It is left to other mechanisms to put the codes together and build or interpret meaningful utterances.

We may compare these structure-constrained modules with the processors that, although autonomous in some sense, nevertheless are not sealed off, or to put it in Fodor’s terms, ‘encapsulated’, or given to us prior to our educational career as a part of our biological starter pack of (spatial, visual, phonological,
etc) abilities which is just bound to ‘grow’ in every normal child given the right environmental conditions (Fodor 1983). In this way, dentists, plumbers, sailors or architects will acquire a whole range of professional skills by dint of long study and practice, which enable them to carry out various tasks swiftly and efficiently but which nonetheless are similar in the way they are constructed. It will be seen that metalinguistic skill might be classified in a similar manner.

It should be clear by now that in MOGUL, ‘language’, in the broadest sense of the word, is much more than the core, structure-constrained abilities (syntactic and phonological processors) referred to above. Thought processes, at least those thoughts that are implicated in language use and which must constitute the bulk of our thinking, are framed in what Jackendoff terms ‘conceptual structure’ (covering much of what is otherwise known as ‘semantic’ and ‘pragmatic’ structure). This is the lingua franca of the mind. Pinker calls it ‘mentalese’ and Fodor the ‘Language of Thought’ (Fodor 1983, Jackendoff 1987, Pinker 1994). The knowledge that we gain by reflection and study is all framed in conceptual structure no matter how automated, or patchy and uncontrolled it is. Hence the building of an utterance from language input from outside (speech, writing, signing) is a linking up of, in the case of speech or signing, certain phonological structures with certain specific syntactic structures and certain specific conceptual structures. Two highly simplified examples would be:

(1) /tim/ ⇔ [Noun Phrase] [Masculine] ⇔ MALE PERSON TIM
(2) /swim/ ⇔ [Verb Phrase][intransitive] ⇔ MOVE THROUGH WATER USING OWN LIMBS

The linking process is accomplished by what Jackendoff calls ‘interface processors’, the basic task of which is to associate a structure in one code with a structure from a code in an adjacent processor. Obviously many such structural correspondences are formed by dint of exposure to a particular language. Some structural correspondence, though perhaps quite logical, is simply not possible in human languages and this is built in as part of the constraining principles of UG (Universal Grammars), that is, the principles that make it feasible for the very young, pre-school child to develop its native language. Some elements (features, categories) involved in these correspondences are therefore provided by the phonology and the syntax ‘in advance.’

One crucial feature of all processing is working memory. While structures are being built up there has to be a temporary store or rather set of stores where certain structures are activated. To take linguistic processing, for example, we

3 Signing, though it does not crucially involve sound, is still understood to have a ‘phonology’.
see that in (1) above, the incoming auditory stream has led to the activation of the phonological string /tim/: this means that /tim/, which is stored in phonological memory on a long term basis, now pops up in phonological working memory as a highly activated structure and is available for the phonological processor to get to work on it, integrating it with other activated phonological structures. In this way, working memory functions as a kind of workbench. As /tim/ appears on the phonological workbench, what is associated with /tim/, a particular syntactic structure, is also triggered in syntactic working memory, i.e. put on the syntactic workbench. What the syntactic processor ‘sees’ turning up in its working memory is only that bit of syntactic code that it understands, i.e. in our example: \Rightarrow [Noun Phrase] [Masculine] and it will blindly try and combine (merge, integrate) that with any other syntactic structures that it happens to have currently in its working memory. In this way, more complicated syntactic structure is assembled on the syntactic workbench (working memory) as more material turns up. So, the same time as this is happening, associated conceptual structures (MALE PERSON TIM) are being triggered in precisely the same way in the conceptual processing system, structures that are drawn from its own long term (conceptual) memory store. In this way, pretty much in parallel, the various different processors are swiftly assembling their own corresponding activated structures without ever having to deal with anything other than what they ‘understand’. For this reason, Jackendoff prefers not to talk of, say, a ‘given phonological string’ being ‘translated’ into a syntactic structure: we might say it is simply being ‘blindly co-activated’.

To sum up, a processing system, whether it be a structure-constrained encapsulated module or a more generic processing system that is constructed during an individual’s life time to deal with problems specific to that individual, is made up of a few basic components:

(1) a store of structures with its own working memory, i.e. a temporary workbench where elements from that store may be placed

(2) an ‘integrative’ processor that takes what it finds in the working memory and builds it into larger structures according to specific rules

(3) one or more interface processors which ensure that an activated structure in working memory co-activates any other external and differently coded structures in other systems that are associated with it.

Hence activating /tim/ co-activates a chain of ‘alien’ structures elsewhere, for example, [Noun]. Note that this entails a different way of looking at lexical items. In Jackendoff’s view, vocabulary items or ‘lexical entries’, like examples 1 and 2, do not exist as such but are rather sets of associations (or ‘interface
rules') across different independent (phonological, syntactic, conceptual) systems.

4.3 Conceptual structure and the Global Workspace

As can be seen from the preceding discussion, the general picture is that the mind is made up of a vast range of processing systems that can be grouped into two essential categories, a generic category which can be thought of, metaphorically rather than literally, as being in a 'central' area, and an outlying rim of highly specific processors.

Complex human behaviour means that a lot of on-line communication has to take place for processors to collaborate in the complex activity that a person is engaged in at that moment. Only activity in the so-called central area can be considered relevant to what we normally think of as conscious thought, metacognition, since the processors in the outer rim are impenetrable. In what Baars calls the 'Global Workspace', coalitions of processors are recruited to carry out various tasks that require different parts of our mind. It is also here that certain novel aspects of problems may be raised to consciousness, even though much of the vast amount of collaborative activity that goes on all the time does not attempt to claim our attention and is therefore normally conducted 'subconsciously'. Novel problems arise when we are facing a novel situation to be solved on the spot and also when we are trying to develop a coordinated and ultimately stable, automatic, subconscious response that will be needed on future occasions. In the Global Workspace model, processors compete for attention so that what we become aware of is just those successful candidates that have won this competition. That this is not a level playing field – some processors have better access to conscious awareness than others – will become clearer in a subsequent section on 'shadows'.

Conceptual structure is the only means by which we can be introspective about language and indeed about anything else. However, one thing that is manifestly impossible for us to do is to consciously manipulate the syntactic and phonological systems we possess in order to affect development in a straightforward fashion. Such systems never participate in the Global Workspace. Their connection is indirect, through interface processors that associate their hidden structures with structures, conceptual structures that are in principle available for conscious inspection. What we can do, because it involves conceptual (rather than syntactic or phonological) structure, is not only think about, but directly affect development in those conceptual areas that are associated (via

4 The precise nature of the Global Workspace will be left aside.
interfaces) with syntax and phonology, i.e. semantics and pragmatics: this at least is the prediction of the model proposed. If we take the traditional notion of a 'word' and ask if we can consciously learn it, then we can answer in modular fashion: yes, we can consciously learn its various meanings and uses in context but its phonological and syntactic behaviour will still have to develop in other ways not involving consciousness.

4.4 Shadows: The special role of phonological structure

As discussed above, we do not have conscious access to the inner workings of the language module but, as Jackendoff (1987) has pointed out, we do have special access to the sounds of language, words, syllables, which poses a prima facie problem to the notion of a sealed-off system. How can we access information that is supposed to be denied to us? The answer would seem to lie in the nature of just what is and is not accessible to awareness. Experience shows that we must be aware of some phonological/prosodic structure – not the fine detail but the basic elements: this explains how we are able to report whether we dream in our L2 or our L1; also in the tip-of-the-tongue situations we are often aware how many syllables the missing word has and sometimes even what sound it begins with (Jackendoff 1987: 288-292). In other words, there is something about sounds of words that enter into our awareness. At the same time, this is at a fairly primitive level: we do not have access to their complex phonological structure. Like a shadow, it only has some few selected properties of the object that casts the shadow. Connected to this proposal of Jackendoff’s is the more general idea discussed by Baars that perceptual processors have privileged access to awareness. On reflection, this is not surprising as the most immediate dangers to the organism would seem to come from the immediate perceived environment. Faced with a mad dog and a serious problem for our theory, we had better attend to the dog first. Hence we are especially aware of images, tastes, tactile sensations and indeed sounds (as opposed to abstract ideas).

What the perceptual processors on the outer rim will do is process sensory information in ways totally inaccessible to us and, like the language processors referred to above, will have their outputs associated with certain structures that are accessible to the central area since we need to coordinate what we smell, feel, taste, hear, and see in order to cope with our environment. This means that there are conceptual, or, if you like, ‘generic’ structures which may be linked up in the Global Workspace. If this were not the case, we could never associate a specific taste, a specific texture and all the other concepts that should be regularly associated with an object to form a complex concept of, say, an orange.
Following the logic of this architecture, it therefore follows that what we experience as a sound of a glass breaking is in fact a conceptual (generic cognitive) structure that is paired with a chain of fine auditory/acoustic structures. We have no more conscious access to these complex acoustic properties than we have access to the underlying syntactic features that make up a noun or a verb. So again there is a 'conceptual' sound that is different from the sound that is processed by the modular mechanisms that deal with patterns of air pressure on the ear drum (basilar membrane), just a shadow of the original.

One possibility that arises here is that the sounds of words of which we are aware are simply the selfsame sounds that we hear when a glass is dropped, i.e. non-linguistic sounds. So, if we can't experience phonological structure, does the word 'John' or 'hamster' come to us only as a sound like a crash of broken glass or a creak of a door then? The answer would seem to be 'no', because, even though its precise phonological make-up remains opaque, we can do more than be aware of it, and remember it as only a 'meaning'. That is to say we are aware, to some extent, of some of the smaller perceptual units that make up the word. We can be relatively aware of, say, intonational aspects, the number of syllables and the presence of sibilants. We can even report this when struggling to remember it when it is 'on the tip of our tongue'. The sounds of words that we are aware of are therefore different in kind from non-linguistic sounds: in other words, they are still specifically linguistic sounds, phonological shadows rather than just auditory shadows. Extrapolating from Jackendoff's model, this can surely only be explained as a special process whereby a given inaccessible phonological/prosodic representation can be put into registration with a corresponding generic (conceptual) representation that is accessible of which the language user can become aware. In MOGUL this is expressed as an interface correspondence processor that associates fine-grained structures in the phonological lexicon with corresponding, simpler conceptual structures outside the core language facility, i.e. 'phonological generic structures'. These PGS are reduced 'shadows' of their phonological equivalents, structures containing just the bare prosodic outlines and none of the complex phonological structure

/lamp/ 'LAMP'

In this way we may become aware of the shadow structures but not of the fine-grained phonological structure that is processed in the inaccessible realms of the phonological processor. As indicated above, these shadow structures have their correlates in various modalities: non-linguistic sounds (splash, crash!), tactile sensations, visual images, many of which we may have no word for and hence no linguistic meaning (conceptual structure).
The existence of these shadow sounds is highly significant for the further explanation of the meta mode. Once we have a generic structure for prosodic patterns, we have the basis for

(a) a rudimentary metalinguistic awareness of sound patterns
(b) if we make/learn words and concepts to describe them, a rudimentary metalinguistic knowledge (‘syllable’, ‘rhymes’ etc.)
(c) a metagrammar (linking up these concepts into a less rudimentary system).

5. The metagrammar

Recall that the goal here is to try to give a more detailed and integrated account of what metalinguistic, including metagrammatical knowledge, is that can be fitted into a wider framework, and try to resolve the conundrum mentioned at the outset of this discussion. To do this, we have to follow through the logic of the architecture of the model we are dealing with.

5.1 Linking sounds with meanings

Metalinguistic learning, in other words the acquisition of knowledge about language, must, to the extent it involves the understanding of grammar, also entail an understanding of properties that are essential to the subconscious, inaccessible system. In other words, like any grammar, the metagrammar, be it fragmentary or sophisticated, must systematically associate sounds with meanings, but, in this case, all of them by definition must be accessible to conscious introspection. The question is, which sounds and which meanings? The answer, in terms of the model under discussion, is that the sounds are those ‘phonological generic structures’ (the shadow sounds). These are linked to, and do therefore activate and are activated by the much more fine-grained and directly inaccessible phonological representations in the Language Module. The meanings, i.e. conceptual structures, are already there in the central area which is accessible to awareness anyway, so that what we are doing when we start working out consciously how a small bit of morphosyntax works, is combine the phonological shadow sound ‘THE’ with the phonological shadow sound ‘ORANGE’ in a particular order ‘THE’ then ‘ORANGE’ and link it up with the concept of an orange. All this can be done in the Global Workspace. This is different from what happens on the language system, where fine phonological structure is rapidly processed and associated with fine syntactic structure which then activates the corresponding conceptual structures relevant to ‘orange’, processes which all happen beyond the reach of our awareness.
5.2 Metalinguistic concepts

Since only limited metalinguistic awareness is manifest in the behaviour of preschool children, we must assume the bulk of our metalinguistic learning comes with literacy and, indeed cognitive maturity. School is where we learn the concept of ‘syllable’ and are asked to say how many syllables a word has. Prior to that we knew perfectly well what a syllable was because you need this knowledge to speak and understand but this knowledge was not metaknowledge. Now, even for a rudimentary metagrammar, we also need a new set of special concepts, a terminology, e.g. syllable, word and word order as well as these conceptual structures like ‘ORANGE’, ‘THE’. We need metalinguistic processes to arrange these into complexes like ‘THE’ + ‘ORANGE’, rather than ‘ORANGE’ + ‘THE’ as appropriate.

Effectively what we are doing as we learn the metagrammar of a language is build a new processing system, a metalinguistic processor, to systematically associate sounds and meanings (a parallel account can be developed for the written mode) and use available concepts (conceptual structures). What we end up with is the two grammars alongside each other which can be in very different stages of development but only one of which is, in principle, accessible to awareness. Like any processing system that is accessible to awareness, the metagrammar can still become quite complex and sophisticated and indeed, in time, can be deployed swiftly and without necessarily entailing awareness. Although, by definition, it is not constrained by the same principles (Universal Grammar) that constrain the encapsulated language system, it can operate below the level of consciousness. Just as any laboriously learned activity such as driving – a classic example – it can eventually become swift and automatic.

6. Conclusion

The notion of automatic metalinguistic behaviour accords with the doubts people have had upon Krashen’s insistence that metalinguistic activity, Monitor use, was necessarily slow and ponderous. At the same time it preserves the idea that the two systems, the metalinguistic one and its counterpart on the outer rim are entirely separate from one another. It also accords with the intuitions that people have had about the subtle but quite distinct differences underlying the performance of native and highly proficient near-native speakers, which at face value appear to be indistinguishable (Sorace 1993, Hawkins and Chan 1997). Non-native speakers may be using quite highly automated metalinguistic knowledge to do things that native speakers handle in the normal manner, hence it is
no longer possible, in the present framework, to exclude metalinguistic activity, in an experiment, by simply giving non-native speakers tasks requiring spontaneous performance. More sophisticated tests such as those driven by linguistic theory are required to identify differences in apparently similar performance. On the credit side, it means that non-native acquirers can achieve higher levels of language use by deploying their metagrammar. How much the gains outweigh possible disadvantages is an empirical question, especially if it is found that metalinguistic ability, where it involves non-native assumptions about the L2, inhibits normal language growth. It is therefore too soon to advocate a return to whole-scale (as opposed to select, fragmentary) metagrammar teaching and metagrammatical practice: there seems to be no obvious reason why the vast amount of time taken to do this would be a safe and worthwhile investment. At any event, the availability of a more elaborate account of what metalinguistic ability is, must be a prerequisite for finding answers to just this sort of question.

References

