Abstract
This paper argues that it might be more fruitful to consider translation as a complex phenomenon rather than considering it in terms of successive ‘turns’ over a period of time. It argues that even interlingual translation is both process and phenomenon, and semiotic in nature. To this it adds the argument that translation is a complex and therefore an emergent phenomenon. The paper then considers some basic conceptual work, preparing the ground for a translation complex rather than translation turns.

Keywords: translation studies, complexity, turns of translation, emergence, process philosophy

1. Introduction

I argued elsewhere that complexity thinking allows for a more nuanced conceptualization of translation processes and phenomena (Marais, 2014; 2017; 2019a; 2019b; Marais & Kull, 2016). My initial conceptualization in 2014 was based on the theory of complex adaptive systems, arguing that new systems emerge out of lower-level systems and under the constraint of higher-level systems. In retrospect, this conceptualization of emergent systems, at least my rendition of them, was too static or substantialist (Ata Ribeiro Pinto, 2016, pp. 2-4). What is needed, I think, is to explain processes, at whichever level of observation, through which complex systems emerge from complex systems or from the semiotic work of individuals. In this article, I therefore focus on process, trying to start clarifying some of the implications of complexity thinking for translation studies.

In addition, drawing on Bundgaard’s (2015: 1) notion of the aesthetic complex, I suggest the ‘translation complex’ and explore the implications of this concept in more detail. In particular, I draw on Ata and Queiroz’s (2016) suggestions for multilevel translation. The point I am trying to argue is that the translation process is always complex, involving various levels and various cause-and-effect relationships.

In order to make this argument, I argue that, most basically conceptualised, translation is to be characterised as semiotic process, and I therefore explore the process nature of semiotics. Secondly, I explore the complexity of this process. Thirdly, I contend that any incipient sign system (source text) is an emergent phenomenon as much as any subsequent sign system (target text) is an emergent phenomenon. Lastly, I explore a model of the ‘translation complex’, conceptualized as a complex, emergent, semiotic process.
2. Interlingual translation: Semiotic process-phenomenon

In Peircean\(^1\) semiotics, meaning is a process in which three elements are interrelated, and together, they form a sign or, more correctly, a sign-process. These elements are a Representamen that stands for an Object to an Interpretant in some respect, as the following quote from Peirce indicates:

A sign, or **representamen**, is something which stands to somebody for something in some respect or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, or perhaps a more developed sign. That sign which it creates I call the **interpretant** of the first sign. The sign stands for something, its **object**. It stands for that object, not in all respects, but in reference to a sort of idea, which I have sometimes called the **ground** of the representamen. (CP 2.228)

From this conceptualization, it is clear that a sign is not something static. Rather, it is a process of forming relationships as Floyd Merrell (1997: 60; 1998: 58-59; 2000: 2) points out: In short, … signs cannot help but reach out to other signs, interrelate with other signs, become translated into other signs, with the ongoing flow of semiosis.

The Representamen (or sign-vehicle, or in common parlance ‘the sign’) is related to the Object (either an idea of something or the thing itself), and the Interpretant (an idea, action or phenomenon) stands in a mediating relationship between the Representamen and the Object in some respect, though not in all respects. Thus, the word ‘dog’ is a Representamen that could stand for my fox terrier (Object), creating an Interpretant (there is my fox terrier) in the respect that this two-dimensional, dead Representamen (the word ‘dog’) bears resemblances to my three-dimensional, live dog and could make me think about my three-dimensional, live dog. Through this mediating relationship, the Interpretant can engender or give rise to another Representamen which is related to an Object, and their relationship is mediated by another Interpretant, which becomes yet another Representamen, ad infinitum. It is thus more appropriate to talk about semiosis, i.e., sign-process, than semiotic. This semiosic process is similar to the metabolism of living organisms, and for a living organism, both processes end only at death. The living organism is born into a stream of semiosis, partakes in it and falls out of it at death. The stream of semiosis has no beginning and no ending. For pragmatic reasons, i.e., to be able to act on the basis of a sign-process, living organisms do focus their attention on a particular moment in the semiosis or take a particular moment in the semiosis to be a ‘final’ Interpretant, for the moment, but this final Interpretant is not absolutely final, only pragmatically final. The point, however, is that meaning is process.

In a co-authored article with Kalevi Kull (Marais & Kull, 2016), I argued that translation, broadly speaking, has to be conceptualized semiotically as defined by Peirce:

These people do not seem to have analyzed the conception of a "meaning,"\(^\dagger\) which is, in its primary acceptation, the translation of a sign into another system of signs, and which, in the acceptation here applicable, is a second assertion from which all that follows from the first assertion equally follows, and **vice versa** (CP 4.127)

In my interpretation of this conceptualization by Peirce, translation is the technical term used to designate the **process** of making meaning, i.e., the process of turning a sign into another sign. This means that any meaning-making and meaning-taking process entails translation. As indicated above, semiosis is a process in which three elements are in a

\(^1\)All references to Peirce in this article are to his Collected Papers (Peirce, 1994) and follow the conventional way of referencing his work.
continuous process of being related. This process is aimed at or has as its goal the creation of Interpretants, i.e., interpretation. In the conceptualization that I propose (Marais, 2019a), translation is thus a technical term, not to be confused with the popular use of the word (on which translation studies scholars base their conceptualization of translation). As a technical term in translation studies, the word translation refers to semiosic process in all its complexity. Interpretation is, equally, a technical term which refers to the aim of the semiosic process, i.e., the creation of Interpretants.

In terms of the definition proposed above, interlingual translation is thus one type of translation in that it entails a process of meaning-making and meaning-taking where the process involves two different natural languages. To give expression to this process nature of translation, I conceptualize what is currently known as a source text as an incipient sign system and what is currently known as a target text as a subsequent sign system. This reflects the fact that neither source nor target is stable but part of a historical process. The incipient sign system is simultaneously a subsequent system from previous processes, and the subsequent system is simultaneously an incipient system for subsequent processes. They are incipient and subsequent to ‘this’ particular process under description only. Also, as part of the stream of semiosis, the incipient sign system entails many streams of meaning from a variety of sources and is thus not ‘a source’ but rather a complex incipient system, hence the notion of ‘translation complex’ to which I return later.

3. Interlingual translation: Complex semiotic process-phenomenon

A complexity approach, broadly speaking, explores non-linear processes in physical, chemical, biological and social-cultural systems (Bak, 1996; Coveny & Highfield, 1995; Downey, 2012; Gribbin, 2004; Johnson, 2009; Mitchell, 2009; Nicolis & Nicholas, 2012; Page, 2011; Prigogine, 1996). The term complexity theory would usually be used in the natural sciences for the quantitative approaches that apply there. More philosophical and humanities-oriented thinking would use the term complexity thinking because ‘complexity thinking’ does not usually share the quantitative, mathematical and computational methods of complexity theory. A mix of complexity theory and complexity thinking has found its way into social sciences, particularly into quantitative social sciences (Byrne & Callaghan, 2014; Desouza & Hensgen, 2005; Griffin, 2002; Griffin & Stacey, 2005a; Marion, 1999; Miller & Page, 2007; Sawyer, 2005). A number of scholars have also explored the implications of complexity thinking for the humanities (Cilliers, 1998; Deacon, 2012; Marais, 2014; Siever, 2017; Taylor, 2001; Van Kooten Niekerv & Buhl, 2004b; Wheeler, 2006)

The main line of argument in this kind of thinking is that the reductionist paradigm does not suffice for studying complex processes because of the non-linear cause-and-effect relationships operative in these kinds of system or process (for a detailed discussion, see Marais, 2014: 26-43). Complex systems are characterized by sensitivity to initial conditions. This means that the effect of small perturbations in initial conditions cannot be predicted because of effects working on effects, destroying the linearity needed for predictable outcomes. The unpredictability of the outcomes of complex processes has huge implications

—

I am aware that this use might cause confusion in translation studies where ‘interpreting’ is also a technical term used for ‘oral translation’. When speaking of the latter, I shall use the term ‘interlingual interpreting’ just as I shall use the term ‘interlingual translation’ for what is currently called ‘translation’ in translation studies.

Interdisciplinarity and Translation Studies
DOI: 10.26262/st.v0i9.7626
for the Western academic program, which is aimed at control and prediction. Complex systems are also constrained by boundary conditions, which means that not all of the initially possible states of a system will be realized because of the limiting constraints exercised by boundaries, which might be other systems.

Complex systems are emergent in nature. This means that the properties of the whole cannot have been predicted based on knowledge of properties of the parts and cannot be understood by understanding the parts. For example, by knowing all the words in the English language, one would not be able to predict the theme of the next Nobel Prize-winning novel. The reason why the properties of the whole is not reducible to the properties of the part is twofold. On the one hand, in complex systems, parts of the system interact to have particular effects, which effects then become, through interaction with other parts at the same hierarchical level, further effects that cause more effects. On the other hand, the constraints exerted by boundary conditions cause certain effects not to be realized, which unrealized effects exert causal influence on the remaining possibilities (Deacon, 2012; Deacon, 2013, 143-205).

Complexity thinking is also usually interested in dissipative systems, i.e., systems that are open to their environment and dissipate their energy and/or information into the environment because they are subject to the Second Law of Thermodynamics. The Second Law of Thermodynamics is concerned with energy and predicts that natural processes run in one direction only and is not reversible (at least not without work). For this flow to happen, the assumption is that one is talking about open systems, i.e., systems that can exchange energy with their environment. Systems that are simultaneously dissipative and self-organizing thus have a complex, interdependent relationship with their environment. They influence their environment as much as they are influenced by it, and they structure their environment as much as they are structured by it. This means that complexity thinking is also interested in history because the effects of the Second Law of Thermodynamics are not reversible.

Complex systems are seen to be neither chaotic nor in equilibrium but ‘at the edge of chaos’. So what are the implications of complexity for interlingual translation? Firstly, the process of translation is never linear as in incipient system > transfer > subsequent system. The process could also not be binary as in incipient system > subsequent system (a point to which I hope to return in future writing). Rather, the process is recursive and subsequent meanings feed back into incipient meanings. So, for instance, a translation of the Bible could have an effect on the interpretation of other translations of the Bible. To be fair, the process is irreversible in time, but that does not mean that it is linear. A second implication would be that there is very little if any predictability in translation processes. Thirdly, and this would be especially important for sociological studies of translation, the theory of dissipative systems and infodynamics (Salthe, 1993) can open new possibilities for studying the emergence or development of society as an effect of translation processes, i.e., the transformation of information. Lastly, it seems that Translation Studies have been subject to numerous attempts to explain the whole in terms of the parts or in terms of particular boundary conditions, i.e. the ‘turns’ of translation studies. A complexity approach to translation would agree that it is not the parts in themselves that gives rise to the whole but the way in which they interact under a particular set of constraints that contribute to the emergence of the whole. A complexity approach would also consider the ‘turns’ not as mutually exclusive approaches in which the subsequent ones invalidate the previous ones but as complementary perspectives that contribute to a fuller understanding of the complexity of translation, as suggested by Robinson’s (2017) notion of icosis.

The notion of a translation complex, to which I return later, explains that translation, either as process or product in conventional parlance, emerge and should be studied as a complex. In translation, the turns have told us that linguistics, pragmatics, culture, society, ideology,
power, a brain, a human personality and meaning, to name but a few, are involved in the emergence of a translational system. Currently, each of these parts of the translation complex is studied in a different ‘turn’ and with good reason. It is impossible for human beings to focus their attention on everything around them. This attentional constraint determines that it makes good sense to study things an aspect at a time. However, it might also be worthwhile, now that we have some information about the various aspects, to focus our attention on the ways in which they interrelate in the process of emergent translation.

4. Interlingual translation: Emergent complex semiotic process-phenomenon

As indicated above, emergence is one of the key concepts in complexity thinking, also in the context of semiotics. Queiroz and El-Hani (2006) have argued that semiotics conforms to all the requirements of an emergent phenomenon. Here, I would like to explore two aspects of emergent thinking, namely hierarchical levels and constraints. Conventional thinking on emergence (Bedau & Humphreys, 2008) argues that the concept ‘emergence’ can explain how new, previously unknown phenomena come to be from existing, known phenomena. Emergent phenomena or properties are not just anything that is new, but something new that could not have been predicted from knowledge of the parts. The mass of ten similarly sized bricks, for instance, is not an emergent property because it could have been predicted by multiplying the mass of one brick by ten. An emergent property is thus a property that is ascribed, on the one hand, to the interaction of the parts of a system, which interaction causes new properties to arise at the level of the system as a whole, and on the other hand, to constraints that play a causative role in the emergence of new properties because it constrains the operations of the parts. The causative flow in the first type of emergence is thus upward, from parts to whole, and it is this type of emergence thinking that gave rise to the adage ‘the whole is more than the sum of the parts’. The causative flow in the second type of emergence is downward, from the whole to the parts, and it is this kind of emergence that caused Deacon (2013: 192 ff) to argue that the whole is less than the parts because the possibilities of the parts have been constrained to form the whole. A property is thus emergent if it exists at the level of the whole, if it could not have been predicted from knowledge of the parts and if it entails something that did not exist at the level of the parts. Problems with emergence (Kim, 2008) entail questioning the claims by proponents of emergence that there can be ‘more’ than there originally was, given that new matter cannot be created. Another problem is the question of downward causation (Bedau, 2008; Chalmers, 2008; Kim, 2008; McLaughlin, 2008), which raises the problem of circular argumentation in emergence thinking and which Deacon addresses with his notion of constraints, which I discuss below.

Complexity thinking also usually conceptualizes reality in terms of hierarchical or nested structures or systems (Marais, 2014, 28-29; Salthe, 1993; 2012), which are both an ontological and epistemological necessity. This is not, as Baumgarten (2017) suggests, slicing up reality. Rather, it is an effort at overcoming Cartesian dualism by arguing that nothing is ‘added’, e.g., a soul, or a spirit, to energy when it becomes matter and to matter when it becomes alive and to live matter when it becomes thinking matter. Rather, ‘soul’, ‘spirit’, ‘life’, ‘mind/consciousness’ are all emergent properties which never break the basic laws of physics. Hierarchical thinking proposes a unifying model, based on the basic premise that nothing in reality can break the laws of physics, but not reducing everything to the physical either. Thus, emergence thinking is trying to be true to both ‘scientific’ findings and
translation turns? understanding of reality and ‘social’ or ‘humanities’ findings and understandings of reality. It tries to explain how, in Deacon’s terms, the ‘absential’ (non-material phenomena) such as meaning, value, or intention came to be in physical systems and came to have causative effect on physical systems. In natural systems, this would mean, for instance, that for anything to be alive, it has to have physical and chemical properties because biological systems are at a higher hierarchical level than purely physical or chemical3 systems. However, physical systems do not have to have the property of being alive because physical systems are at a lower hierarchical level than biological systems. Considering the implications of this kind of thinking for interlingual translation, this means that one would also be able to conceptualize hierarchical, nested systems in the translation process. For instance, a text could be viewed as a system, with sentences as lower-level system and with words as even a lower-level system. Genre could be viewed as a higher-level system. Thus, for a system to be categorized as a sentence, it has to consist of words because sentences are at a higher hierarchical level than words. Grammatically speaking, something cannot be a sentence without words.

In a response to the criticism on downward causation and bottom-up emergence, with which he agrees, Deacon (2013: 182-205) explores the notion of constraints to explain that emergence is not only a bottom-up process but also a top-down process. Deacon assumes that a system, at a given point in time, has the potential to develop in a number of possible trajectories and that it thus entails a number of possibilities. Once one of these possibilities has been realized by the system taking a particular trajectory, the number of possibilities for further development is constrained by the unrealized possibilities. In this sense, the whole, through the constraining effects of unrealized possibilities, can exercise downward causation on the parts without having to argue in a circular way that the parts, having acquired new properties in the whole, are then able to effect change on themselves. The ‘more’ in conventional top-down emergence is explained as the effect of constraints. The more constraints, the more novelty.

In this line of thinking, the question arises whether everything then is not constraint. This is a valid question and can only be answered by recourse to the kind of hierarchical thinking explained above. Salthe (1993; 2012, also see (Queiroz & El-Hani, 2006; Queiroz & Loula, 2010)) explains that reality entails a set of nested hierarchical systems. As indicated above, for something to be biological, it necessarily has to be physical and chemical. Equally, for something to be social, it has to be biological and physical and chemical. For something to be a novel, it has to have words. Salthe then uses a triad of hierarchies to come to some kind of analysable reality (Ata Ribeiro Pinto, 2016; Queiroz & El-Hani, 2006). Firstly, one has the level of observation, the level of awareness. This is a choice by the observer, and there is nothing in the level itself that privileges it, except that human-scale levels are probably the first and easiest to observe. For every observer level, Salthe then constructs an immediately lower and an immediately higher level. For any particular observer level, the next lower level constitutes parts from which the higher level emerges. For that same observer level, the next higher level constitutes constraints that operate on the emergence of the observer level.

So, let us take a novel as our level of observation, as an example. The next lower level could be the sentences from which this novel emerges. The next higher level could be the type of novel, let us say a realist novel, which constrains the possibilities that can be realized with the words. Or let us take a constitution of a country as our level of observation. The next lower level would again be the sentences. The next higher level would then be the legal context within which this constitution operates. In this interplay between hierarchical levels, meaning emerges. It seems clear to me that, in this kind of relational thinking, both lower and

3 I take physical systems to refer to forces/energy while chemical systems refer to the material form that forces or energy takes.
higher levels contribute to the emergence of something like meaning and that these relationships between hierarchical levels per definition include issues of power and ideology, of which Baumgarten (2017) reminds us. It is precisely because of the differential relationships between systemic levels that issues of power and ideology are relevant in all cases, although it is by no means the only factor that is relevant. I can demonstrate this with an example. Firstly, consider the systemic level of a national literary canon as the level of observation. This system stands in relationships to other national systems, which might be stronger or weaker than it, and this power differential will play a constraining role in our observed system. Also, the national system would stand in relationship to the world system, which would then be a hierarchically higher-level system, and once again, our national system has to exist or develop in the constraining context of power relationships with this world system. A national literary canon also has the political system of the nation state as a hierarchically higher-level system in terms of which it develops and which stands in a particular ideological relationship to it. Secondly, consider the lower-level hierarchies such as the language in which this novel is written. Let us assume that this language has only recently been put into writing, which means that the novel is constrained by numerous lower-level factors such as terminology, written grammar, writing conventions or pragmatics (not to mention a dearth of written literary history).

One of the implications of this kind of thinking is that neither the parts nor the whole has logical or historical priority, in particular in interlingual translation. In a novel, the whole could be said to determine the parts because an author probably had a concept of the novel first and then that concept constrained the kind of sentences she could use. As functional translation theory predicts, the subsequent text as a whole (its function) constrains the reading of the incipient text and the selection of relevant semiotic material to rework. Meaning is never given, and it is never ‘in’ something. It is emerging relationally between Representamen, Object and Interpretant, systemically speaking. Also, it emerges historically in processes of making meaning and taking meaning, and these processes are subject to both initial and boundary conditions. These processes take place in a matrix of power and ideological relationships between higher and lower levels of existence.

5. Conceptualizing models for the ‘translation complex’

One of the problems that complexity thinking raises is to obtain conceptual clarity amidst the seeming chaos/complexity of factors that one is expected to consider. Reductionism sought to solve this problem by reducing the problem to its most basic constituents, but complexity thinking exactly tries to use as little reductionism as possible. At the same time, no human being can think about or observe everything at the same time. It is biologically and logically impossible. We are thus looking for ways of incorporating as much of the complexity of reality in our intellectual models.

One of the ways of dealing with this problem is by translating the conceptualization into another set of signs such as a metaphor or a model. One can model complex processes in a number of ways, but the crucial point is that the materiality of the medium that you use for the modelling constrains the model itself. With modelling, the hope is always that what is lost in complex meaning is gained in clarity of understanding, a trade-off which might or might not be successful, which is why one probably needs more than one models. What one can do in a written text is to describe a metaphor or conceptual model. For instance, the rhizome is a good model for complexity. Merrel (2000: 95-99) also used some adaptations to the Mobius
strip to model the translation process. Seddon (2019) modelled the complexity of translation on tornados. In my own thinking, I tried to model translation by means of a fluid-mechanics model, namely eddies in a stream and by aerodynamics, namely how an airplane pushes itself forward with a propeller. All models, including metaphors, prove to be limited, and an additional problem is that a two-dimensional medium like writing cannot represent translation in four dimensions (three dimensions of space and one of time), as is needed. So, this section conceptualizes a four-dimensional computer animation with which to model translation. The animation work is in progress, but its details will have to wait for another day to find its way into a paper.

Here, I would like to explore two models of translation in four dimensions with moving animations, namely eddies in a stream and aerodynamics such as the propeller of an aeroplane. The brief to the graphic designer4 is to provide me with two-dimensional and three-dimensional moving animations that represent the process nature of translation. This means that the animations should include the dimension of time, which is difficult to represent on a flat page. The second key feature of the animations is that they should represent the complexity of the semiotic process. This means that they should be able to represent multiple inputs (initial conditions) and multiple outputs as well as multiple constraints (complex causality) on the process itself. I conceptualize both the initial conditions and constraints as a complex of cause and effect, suggesting that such a complex provides a better understanding of translation than do the successive turns because the turns tend to reduce the complexity of translation to one set of cause-and-effect relations only. The third feature that should be represented is emergence, in other words, the fact that the structures that emerge in translation are not givens but the result of negentropic semiotic work. With this third feature, I would like to demonstrate that what needs to be explained in translation is not change because translation is change, it is process. What needs to be explained is how process takes form, how it gets stabilized to a point where it can be used for communication or information exchange or knowledge creation, etc.

The graphic designer, who does not know translation studies, undertook to start working on a concept for a two-dimensional animation first (Figure 1). Our initial conceptualization of the eddies was that he would design a river with a number of branches contributing to the main flow. The water in each branch will be coloured differently, and one would be able to change the amount of flow in each contributing branch. The different colours of water would then flow through the first eddy (incipient sign system), mixing and flowing out in different

4 I am collaborating with Demitri Matthee, a graphic designer.
colours to enter the second eddy (subsequent sign system), where they again mix and flow out in different colours. In Figure 1, the eddies are represented by turbines in the water. Figure 1 represents the first draft. I shall report elsewhere on the final product. Once the animations have been completed, I plan to make them available online.

Figure 2: Translation modelled as electric currents

In his conceptualisation process, the graphic designer experimented with a model that has the same concept as fluid mechanics, but represented as electric currents. A variety of streams of meaning flows together in a circle of energy (just to the right of the middle of Figure 2), the incipient sign system, and then flows further and divides again (not visible in this rendering) from the subsequent sign system.

For the aerodynamic animation, the brief was to provide an airplane with a propeller with three blades, representing the Peircean triad of representamen, object and interpretant (Figure 3). The animation should then show the air flowing through the propeller (being sucked in and blown out), causing a different pattern of flow. The particular feature of this animation is that the propeller itself is moving in space and time, representing semiosis. Figure 3 is, once again, just a concept that has to be refined by having fewer blades on the propeller and by including animation for the wind flow.

Figure 3: Concept of translation modelled as aerodynamics

The eventual aim is to provide software packages that can be used as pedagogical tools to demonstrate the semiotic theory of translation as explained above. In future, it could also
possible be combined with knowledge from the digital humanities to model causality in real translation processes with quantitative data. As indicated in a different paper (Marais, 2019b), one could even use this software to model ordinal rank in exploring causality in translation. What the animations also model is that the streams of meaning that are involved in a translation process are complex. One could conceptualize the streams in various ways, one of them being that the streams represent language, literature, culture, society, etc. All of these aspects combine in a translation process.

6. Conclusion

In this article, I argued that translation studies should conceptualize ‘translation’ theoretically from a semiotic perspective. Basing my argument on Peirce’s conceptualization of translation, I thus propose that translation is the technical term to refer to the semiotic process. This process is both complex and emergent, as discussed in the article. I suggested computer animations to model the complex, emergent nature of the semiotic process, i.e., translation, in terms of fluid mechanics and aerodynamics. The main point I tried to argue is that all translations, i.e., semiotic processes, have in common the fact that a Representamen is related to an Object by the mediation of an Interpretant in a never-ending stream. The differences between translations lie not in the differences in the translation process itself but in the different constraints that have causal effect on the translation process. Thus, literary translation and news or legal translation operate on the same basic semiotic process, but they differ in that different sets of constraints and affordances play a role in them and constrain the semiotic process in particular ways.

I also argued that an emergence theory of hierarchical systems is able to explain not only the power and ideological relationships between systems but also the complexity of systemic processes themselves. Even within a system such are poetry, subsystems such as rhyme and rhythm offer competing affordances and constraints that can be realized to a greater or lesser extent in a subsequent sign but never copied.

Lastly, I argued that many of the constraints that play a role in translation do not lie in the nature of semiosis itself but rather in the causative effect of initiating and boundary conditions, i.e., constraints. No translation, i.e., no meaning, can be either an exact copy of the incipient sign or absolutely new and original. All translations are somewhere in between absolute replica and absolute novelty. It is (also) the historical constraints that determine the relationship between incipient and subsequent sign, not only the nature of either meaning/semiosis or language.

References

Interdisciplinarity and Translation Studies
DOI: 10.26262/st.v0i9.7626

Marais, K. (2017). We have never been un(der)developed: Translation and the biosemiotic foundation of being in the global south. In: K. Marais & I. Feinauer (Eds.), *Translation beyond the postcolony* (pp. 8–32). London: Cambridge Scholars Press.

