TECHNIQUE OF RECHARGE OF AN AQUIFER USING A FUZZY SET APPROACH

Christos Tzimopoulos* - Stavros Yannopoulos* - Iraklis Chalkidis*

*Faculty of Rural and Surveying Engineering, Department of Transportation and Hydraulic Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

SUMMARY
Many times in a aquifer there is a lack of available direct measurement data and for this reason these data, concerning the aquifer hydraulic parameters, become imprecise informations. As a consequence, a groundwater model should be developed to use this imprecise data. In this paper, a model is presented based on fuzzy set theory in order to cover the uncertainty associated with hydraulic conductivity and effective porosity. The transient fuzzy groundwater flow model provides a measure of incoming water volume in the time domain, using the fuzzy number inputs. This fuzzy modelling technique provides fuzzy information and utilizes triangular fuzzy membership functions, but it is flexible enough in order to handle different types of membership functions. A numerical application was tested against Boussinesq analytical solution, providing incoming water volume for different times.

Συζήτηση (discussion) της εργασίας αυτής γίνεται διεκδική μέχρι την 30/04/09
1. ΕΙΣΑΓΩΓΗ

Είναι γνωστό και αποδεκτό συγχρόνως από την επιστημονική κοινότητα ότι κατά την ανάπτυξη των διαφόρων μεθόδων προσομοίωσης, φυσικών φαινομένων εμφανίζονται ασάφειες στις τιμές των παραμέτρων που εισάγονται στα μαθηματικά μοντέλα σε κάθε περίπτωση, όπως είναι οι τιμές των υδραυλικών παραμέτρων ενός υδροφορεία ή ο συντελεστής διασποράς, η υγρασία κορεσμού κ.λπ. Οι ασάφειες αυτές, επηρεάζονται σε μεγάλο βαθμό τα αριθμητικά αποτελέσματα και ως εκ τούτου θα πρέπει να λαμβάνονται υπόψη στους υπολογισμούς. Αυτός είναι ο βασικός λόγος της ανάπτυξης της θεωρίας της ασαφείας λογικής από τον Zadeh (1965). Η θεωρία αυτή, ένα και στην αρχή έγινε αποδεκτή με επιφυλακτικότητα από την επιστημονική κοινότητα, εξελίχθηκε ταχύτατα στη συνέχεια από τον Sugeno (1972), ο οποίος εφαρμόσε το μέθοδο του Zadeh (1965) σε μετρήσεις πάνω σε δέματα ασάφειας και διαστημάτων ασάφειας, καθώς επίσης και από τον Mandani (1974) του Πανεπιστημίου του Λονδίνου, που εφαρμόσε για πρώτη φορά την ασαφή λογική σε μεθόδους ελέγχου και συγκεκριμένα, για τον έλεγχο της λειτουργίας μιας απλής ατμομηχανής. Σήμερα τα μοντέλα της ασαφής λογικής βρίσκουν ευρεία εφαρμογή στη λήψη αποφάσεων, στη θεωρία ελέγχου, στην πρόβλεψη και την βελτιστοποίηση, καθώς μπορούν να μετατρέψουν την ασαφή γλωσσική πληροφορία σε αριθμητική μορφή. Δεν έχει γίνει ακόμη στα τελευταία χρόνια δεδομένα ενιαία ανακριτική θεωρία, και δεν έχει γίνει πολλή εργασία στον τομέα αυτόν.

Στην εποχή της Υδραυλικής αναφέρονται οι Dou et al. (1995), οι οποίοι εξέτασαν ένα υδροφορείο υπό πίεση με μόνη κίνηση που παρουσίαζε ασαφείς υδραυλικές παραμέτρους και επέλεξαν το αριθμητικό σχήμα που προέκυπε με τη μέθοδο των διαστημάτων. Οι Chang et al. (1996), παρουσίασαν μια θεωρητική μέθοδο προγραμματισμού με πολλές αντικειμενικές συναρτήσεις όπου τα μηχανήματα είναι ασαφή. Οι Dou et al. (1997a), οι οποίοι παρουσίασαν ένα μοντέλο μη μόνης ροής σε υδροφορεία υπό πίεση με ασαφή διαδομένα και ήλεγχαν τα αποτελέσματα του αριθμητικού μοντέλου με την αναλυτική λύση της Θεσς. Οι Dou et al. (1997b), οι οποίοι παρουσίασαν ένα μοντέλο ασαφών λογικής σε προβλήματα διασποράς. Oι Tseggavarapu και Simonovich (1999), οι οποίοι παρουσίασαν ένα μοντέλο ασαφών λογικής για την περίπτωση ενός ταμειακού. Οι Mujumdar και Sasikumar (2002), οι οποίοι παρουσίασαν ένα ασαφές μοντέλο βελτιστοποίησης για την ποιοτική διαχείριση ενός ποταμού. Οι Faye et al. (2003), οι οποίοι παρουσίασαν ένα μοντέλο ασαφών λογικής για συστήματα υδατικών πόρων.

Μια άλλη κατηγορία προβλημάτων αφορά στα συστήματα ασαφών κανόνων, που έχουν εφαρμογή κυρίως σε προβλήματα διαχείρισης ταμειακών (Shrestha et al., 1996), προβλήματα υδρολογίας (Piecota και Dracup, 1996) και προβλήματα στην ακόρεστη ζωή (Dou et al., 1999).

Στο παρόν άρθρο παρουσιάζεται η επίλυση ενός προβλήματος τεχνητής επαναφόρτισης ενός ελεύθερου υδροφορείου, στον οποίο οι υδραυλικές παράμετροι
periéçoun asáfereis. Syngkekrìména, paroussízetai hé méthodoología ton arúbhmátikon
práxeon twn asáfwor arúbhmoun, ópous autoi periégórfetai apò tous Kaufmann and
Gupta (1991), me diáforotikó trópo apò tì méthodo ton diastemátov (Moore, 1966)
kai sti syngékria, dínei mia arúbhmikí efarmogí. H émfaroi dínei ston
apóðíteksemuño öghko tòu néróu méso ston vúdroforéa gia diáfora epíppa pithánóstias
kapo paroussízontai oi suvartíseis empiostosúvnis (sýmepetochi) gia diáforas chronikés
stigmeis, kathós kai o öghko tòu néróu pou antistoiçi sti kentrò basóu twn
suvartíseon empiostosúvnis.

2. MATHIMATIKO MONTÉLÓ

H diáforikí exíswsi pou periégórfetai tìn kínhsis tòu néróu se eléuthero
vúdroforéa, ó opoioi emploutízetai apo parakéimeno uđatórrkeuma (Sýmhma 1)
periégórfetai apò tìn exíswsi Boussinesq:

$$\frac{\partial h}{\partial t} = \frac{K_s}{n_s} \frac{\partial (\frac{\partial h}{\partial x})}{\partial x}$$

(2.1)

me tis akólouthes bothéptikís svnthkeis:

$$h(x,0) = h_1, \quad x \geq 0, \quad t = 0,$$

$$h(x,0) = h_0, \quad x = 0, \quad t > 0,$$

$$h(\infty,t) = h_1, \quad x \to \infty, \quad t > 0.$$

(2.2)

Σtìn (2.1): K_s òa vúdrofilikí agouásmítta korresoum, n_s òa apoleteliasmítik pórrades
kapo h-to básos tòu néróu apò tìn epifánheia tòu mékrí tìn adiáptóto svnthkeis.

O Oden (1998), anafereómenos se ergasiai tòn Lane and Zinn (1980), tonizei óti oí
parapánvo orísses svnthkeis (2.2), apótopes apó tòu státhmhs, diímovghntai sti
pedí apoí leitourgia thurofragímatov se éna vúdroforéa gia tìn tehnité
emploutísmo vúdroforéon me eléutheri epifánheia.

![Sýmhma 1. Técchnh epaupalhrwsi vúdroforéa](image)

H (2.1) se graammitikotopímenh morfi gráfetai:

$$\frac{\partial h^2}{\partial t} = \frac{K_s}{n_s} \frac{\partial^2 h^2}{\partial x^2},$$

(2.3)

ópou $B = (h_1 + h_0)/2$, enói oí bothéptikés svnthkeis (2.2) me tì morfi:

...
\[h(x,0)^2 = h_1^2, \quad x \geq 0, \quad t = 0, \]
\[h(x,0)^2 = h_1^2, \quad x = 0, \quad t > 0, \]
\[h(\infty, t)^2 = h_2^2, \quad x \to \infty, \quad t > 0. \] \hspace{1cm} (2.4)

Η λύση των (2.3) και (2.4) επιτυγχάνεται, είτε με τη βοήθεια του μετασχηματισμού Λαπλας (Τζιμόπουλος και Γιαννόπουλος, 1998), είτε με τη βοήθεια μετασχηματισμού ομοιότητας (Τερζίδης και Καραμούζης, 1986).

\[\frac{h_1^2 - h_2^2}{h_1^2 - h_2^2} = 1 - \text{erf} \left(\frac{x}{\sqrt{4\alpha t}} \right), \quad \alpha = \frac{K_s B}{n_i}. \] \hspace{1cm} (2.5)

Ο αποθηκευμένος όγκος νερού ως συνάρτηση του χρόνου, υπολογίζεται από την εξίσωση:

\[V = (h_1^2 - h_0^2) \sqrt{\frac{n_i K_s}{B \pi} \sqrt{f}} = \Phi \sqrt{f} \left(\frac{L_1}{L} \right) \] \hspace{1cm} (2.6)

όπου

\[\Phi = (h_1^2 - h_0^2) \sqrt{\frac{n_i K_s}{B \pi}} \] \hspace{1cm} (2.7)

Οι Tolikas et al. (1984) όπως ήδη αναφέρθηκε, παρουσίασαν μία προσεγγιστική αναλυτική λύση της εξίσωσης (2.4) και για τον αποθηκευμένο όγκο νερού έδωσαν την ακόλουθη σχέση:

\[\frac{V}{n_i h_0} = (\mu + v) \frac{\eta_k}{2} \sqrt{K_t/(n_i h_0)} \] \hspace{1cm} (2.7a)

όπου \(\mu = h_1/h_0 \), \(v = \) μία παράμετρος συνάρτηση του λόγου \(h_1/h_0 \) που προσεγγίζεται ικανοποιητικά από τη σχέση \(v = \log(2.558 h_1/h_0)^{1.125} \) και η \(\eta_k \) το σημείο καμπύλης της μετασχηματισμένης καμπύλης \(h(\chi)^{1/2} \), που δίνεται ως συνάρτηση του \(h_1/h_0 \).

Μια γραμμικοποιημένη μορφή του αποθηκευμένου όγκου δίνεται από τους παραπάνω συγγραφείς με τη μορφή:

\[\frac{V}{n_i h_0} = \sqrt{2/\pi} (\mu - 1)(\mu + 1)^{1/2} \sqrt{K_t/(n_i h_0)} \] \hspace{1cm} (2.7b)

Η παραπάνω εξίσωση (2.7b) είναι ακριβούς ιδία με την εξίσωση (2.7) και για μικρές τιμές του λόγου \(h_1/h_0 \) προσεγγίζει ικανοποιητικά την πρώτη εξίσωση (2.7a). Μια ολοκληρωμένη ανάλυση των παραπάνω βρίσκει κανείς στον Bear (1972)

3. МОНЕЛЕ АΣΑФΟΥΣ ЛОГИКΗΣ

3.1. ГЕНИКОМУНТЕС

Στην κοινή λογική ένα γεγονός μπορεί να είναι αληθές ή όχι, ανάλογα με την ικανοποίηση ή όχι των κριτηρίων που έχουν τεθεί. Αντίθετα, στην ασαφή λογική ένα γεγονός μπορεί να είναι αληθές, αλλά σε μερικό βαθμό. Η ασαφής λογική αποτελεί μια παραγνή της κοινής λογικής, καθώς δίνει η δυνατότητα χειρισμού της
3.2 ΑΣΑΦΕΙΣ ΑΡΙΘΜΟΙ

Ασαφείς αριθμοί ονομάζονται τα ασαφή σύνολα, που έχουν τις εξής ιδιότητες:
1. Ορίζονται στο σύνολο των κανονικών αριθμών.
2. Έχουν ένα στοιχείο \(x_0 \in \mathbb{R} \) για το οποίο η συνάρτηση έμπιστοσύνης \(\mu_4(x) \) ισούται με τη μονάδα.
3. Αποτελούν ένα κυρτό ασαφές σύνολο.
4. Η συνάρτηση έμπιστοσύνης του συνόλου \(\mu_4(x) \) είναι συνεχής.

3.3 ΣΧΗΜΑ ΣΥΝΑΡΤΗΣΗΣ ΕΜΠΙΣΤΟΣΥΝΗΣ

Οι συναρτήσεις έμπιστοσύνης αποτελούν το μέσο προσδιορισμού της ασφάλειας ενός συνόλου και μπορούν να περιγράφονται μαθηματικά από ένα μεγάλο αριθμό εξισώσεων. Οι συναρτήσεις έμπιστοσύνης μπορούν να αποτελέσουν μια ποικιλία σχημάτων, όπως τριγωνικές, καδονοειδείς (bell-shaped), μορφής Gauss, L-R (Left-Right) ασαφείς αριθμοί, κλπ. Στο Σχήμα 2 απεικονίζεται μια τριγωνική συνάρτηση εμπιστοσύνης.

![Σχήμα 2. Συνάρτηση εμπιστοσύνης (συμμετοχής)](image-url)
Ένα ασαφές σύνολο είναι τριγωνικό και συμβολίζεται \((a_1, a_2, a_3)\) με \(a_1 < a_2 < a_3\), αν η συνάρτηση εμπιστοσύνης του είναι:

\[
\mu_4(x) = \frac{x - a_1}{a_2 - a_1} + \frac{a_3 - x}{a_3 - a_2},
\]

όπου

\[
\varepsilon_1 = 0, \quad x < a_1, \quad x > a_3, \quad \varepsilon_2 = 1, \quad a_1 < x \leq a_2,
\]
\[
\varepsilon_3 = 0, \quad x < a_3, \quad x > a_2, \quad \varepsilon_4 = 1, \quad a_2 < x \leq a_3.
\]

Το πεδίο ορισμού του τριγωνικού ασαφούς αριθμού ισοδυναμεί με το διάστημα \((a_1, a_3)\), εφόσον πρόκειται περί κυρτών συναρτήσεων εμπιστοσύνης. Τα πλεονεκτήματα των τριγωνικών ασαφών αριθμών είναι ότι αποτελούν την απολύτηρη μορφή ασαφούς αριθμού, ενώ διαθέτουν ευέλιξη, καθώς είναι δυνατή η κατασκευή μη συμμετρικών συνόλων και επίσης, σύμφωνα με τους Bardsossy and Duckstein (1995) και τον Δραπέλα (2007), το σχήμα του ασαφούς αριθμού δεν επηρεάζει πολύ τα αριθμητικά αποτελέσματα. Για το λόγο αυτό εφεξής γίνεται αναφορά στους αριθμούς αυτούς.

3.4 ΠΡΑΣΕΙΣ ΕΠΙ ΤΩΝ ΤΡΙΓΩΝΙΚΩΝ ΑΣΑΦΩΝ ΑΡΙΘΜΩΝ

Θεωρείται στο Σχήμα 2 ο τριγωνικός αριθμός \((a_1, a_2, a_3)\) και το ευθύγραμμο τμήμα \(A_1(\alpha)-A_2(\alpha)\). Θέτεται \(X_{ab} = A_1(\alpha), X_{bc} = A_2(\alpha), (\alpha = \text{επίπεδο πιθανότητας})\) ή θέτοντας \(A_1(\alpha) = (a_1 - a_2)\alpha + a_1, \quad A_2(\alpha) = a_2 - (a_1 - a_2)\alpha\), ο τριγωνικός αριθμός \((a_1, a_2, a_3)\) προσδιορίζεται πλέον ως εξής:

\[
A_\alpha = [A_1(\alpha), A_2(\alpha)] = [(a_2 - a_1)\alpha + a_1, a_2 - (a_1 - a_2)\alpha]
\]

(3.1)

Το διάστημα \([A_1(\alpha), A_2(\alpha)]\) καλείται, σύμφωνα με τους Kaufmann and Gupta (1991), διάστημα εμπιστοσύνης στο επίπεδο \(\alpha\). Με βάση πλέον την (3.1) οι αριθμητικές πράξεις δύο τριγωνικών ασαφών αριθμών \(A = A_\alpha = [A_1(\alpha), A_2(\alpha)], B = B_\beta = [B_1(\alpha), B_2(\alpha)]\) ορίζονται ως εξής:

- **Πρόσθεση**

\[
A_\alpha(+)B_\beta = [A_1(\alpha)+B_1(\alpha), A_2(\alpha)+B_2(\alpha)].
\]

- **Αφαίρεση**

\[
A_\alpha(-)B_\beta = [A_1(\alpha)-B_2(\alpha), A_2(\alpha)-B_1(\alpha)].
\]

- **Πολλαπλασιασμός**

\[
A_\alpha(\cdot)B_\beta = [A_1(\alpha)B_1(\alpha), A_2(\alpha)B_2(\alpha)].
\]

- **Διαίρεση**

\[
A_\alpha(\div)B_\beta = [A_1(\alpha)/B_2(\alpha), A_2(\alpha)/B_1(\alpha)].
\]

- **Τετραγωνική ρίζα του \(A_\alpha\)**
\[
\sqrt{A_a} = \sqrt{[A_1(a), A_2(a)]} = \left[\sqrt{A_1(a)}, \sqrt{A_2(a)} \right]
\]

- Δυνάμεις του \(A_a \)

\[
[A_1(a), A_2(a)]^2 = [A_1(a)^2, A_2(a)^2]
\]

\[
[A_1(a), A_2(a)]^3 = [A_1(a)^3, A_2(a)^3] \quad \text{k.o.k.}
\]

- Ορισμός του \(e^A \)

\[
e^A = \left[e^{A_1(a)}, e^{A_2(a)} \right], \quad \kappa, \lambda, \pi.
\]

4. ΕΦΑΡΜΟΓΗ

Θεωρείται η περίπτωση του τεχνητού εμπλουτισμού του Σχήματος 1 με \(h_1 = 10 \) m και \(h_0 = 2 \) m, οπότε η συνάρτηση \(\Phi \) της (2.7) γράφεται:

\[
\Phi = (k_1^2 - k_0^2) \sqrt{\frac{n_f K_f}{B \pi}} = 22.11 \sqrt{n_f K_f}
\]

Οι παράμετροι \(K_f \) και \(n_f \) δίνονται ως ασαφείς αριθμοί και απεικονίζονται στο Σχήμα 3.

(α)

(β)

Σχήμα 3. Συναρτήσεις εμπιστοσύνης των παραμέτρων \(n_f (a) \) και \(K_f (b) \).

Σύμφωνα με τα προαναφερθέντα, η συνάρτηση \(\Phi \) ως ασαφής αριθμός ορίζεται:
\[\Phi_a = 22.11 \sqrt{n_i K_x} \]
\[= 22.11 \left[\sqrt{(0.12 + 0.13\alpha)(0.0005 + 0.0045\alpha)}, \sqrt{(0.32 - 0.07\alpha)(0.02 - 0.015\alpha)} \right] \]
\[= 22.11 \left[\sqrt{0.00006 + 0.000605\alpha + 0.000585\alpha^2}, \sqrt{0.0064 - 0.0062\alpha + 0.00105\alpha^2} \right] \]
\[= 22.11 \left[f(\alpha)_{\text{αποστρ.}}, f(\alpha)_{\text{ισόφ.}} \right]. \]

ενώ ο όγκος εισροής ως ασαφής αριθμός ορίζεται από τη σχέση:
\[V_a = 22.11 f(\alpha)_{\text{αποστρ.}} \cdot \sqrt{f}, \quad 22.11 f(\alpha)_{\text{ισόφ.}} \cdot \sqrt{f}. \]

Στο Σχήμα 4 απεικονίζεται η ασαφής συνάρτηση \(\Phi_a/22.11 \), ενώ στα Σχήματα 5 (\(\alpha, \gamma, \delta, \epsilon, \zeta \)) απεικονίζεται ο όγκος εισροής \([m^3/m]\) για επίπεδα πυκνότητας \(\alpha = 0, 0.2, 0.4, 0.6, 0.8 \) και 1.
Σχήμα 5(α,β,γ,δ,ε,ζ). Όγκος εισροής για επίπεδα πιθανότητας $\alpha = 0, 0.2, 0.4, 0.6, 0.8$ και 1.

Επίσης, στα Σχήματα 6 (α,β,γ,δ,ε,ζ,η,θ) δίνεται η συνάρτηση εμπειροαρχής (συμμετοχής) για χρόνους $t = 10^3$, 5×10^3, 10^4, 2×10^4, 3×10^4, 4×10^4, 5×10^4, 6×10^4 s. Ο χρόνος για τον άγκο εισροής προέκυψε σε seconds, επειδή η υδραυλική αγωγιμότητα K δίνεται σε m/s.
Σχήμα 6 (α,β,γ,δ,ε,ζ,η,θ). Συναρτήσεις εμπιστοσύνης μυ για διάφορους χρόνους τ

4.1 ΑΠΟΣΑΦΗΝΙΣΗ (Defuzzification)

Επειδή οι άνθρωποι προτιμούν να αποφασίζουν με μια συγκεκριμένη τμη, έστω και αν τα δεδομένα ενός προβλήματος είναι ασαφή, όπως στη συγκεκριμένη περίπτωση, δημιουργήθηκε στην ασφαλή λογική η διαδικασία της αποσαφήνισης των ασαφών αριθμητικών αποτελεσμάτων, η οποία και εφαρμόζεται ευρέως στη θεωρία ελέγχου, στην ανάλυση αποφάσεων, στην ανάλυση δεδομένων και σε άλλες περιπτώσεις. Κατά τον Zimmermann (1996), δεν υπάρχει μια βέλτιστη μέθοδος αποσαφήνισης. Σήμερα, η περισσότερο διαδεδομένη μέθοδος αποσαφήνισης είναι του κέντρου βάρους (COA, Center of Gravity), η οποία και εφαρμόζεται στην παρούσα εργασία. Σύμφωνα με τη μέθοδο αυτή, η μορφή της συνάρτησης εμπιστοσύνης διαμόρφωσε σε δέκα τραπέζια (το δέκατο είναι το τελευταίο άνοι μέρος της συνάρτησης εμπιστοσύνης δηλαδή ένα τρίγωνο που θεωρείται τραπέζιο με την άνω πλευρά να έχει μηδενική διάσταση) και οι συντεταγμένες του αντιστοιχούν στο κέντρο βάρους της συνάρτησης εμπιστοσύνης υπολογίστηκαν από την (4.1):

\[x_v = \sum_{i=1}^{10} x_i f_i, \quad y_v = \frac{\sum_{i=1}^{10} y_i f_i}{\sum_{i=1}^{10} f_i} \]

όπου \(x_i, y_i, f_i \) είναι αντίστοιχα οι συντεταγμένες του κέντρου βάρους και το εμβαδό καθενός τραπεζίου. Στο Σχήμα 7 απεικονίζεται η μεταβολή του αποσαφηνισμένου όγκου εισροής με το χρόνο, για επίπεδα πλακαντής α=1, 0.9, 0.8.

Σχήμα 7. Μεταβολή του αποσαφηνισμένου όγκου εισροής με το χρόνο
4.2 ΠΑΡΑΤΗΡΗΣΕΙΣ

Στο Σχήμα 5 απεικονίζεται για διάφορα επίπεδα πιθανότητας α, ο ύγκος εισροής στον υδροφόρο. Το τελευταίο από τα σχήματα αυτά αναφέρεται στην τιμή $\alpha=1$, η οποία σημαίνει ότι για επίπεδο πιθανότητας 1 (100%) οι τιμές της K, και του n_r είναι αντίστοιχα 0.005 m/s και 0.25 και επομένως προκύπτει η περίπτωση των πραγματικών παραμέτρων και για το λόγο αυτό εμφανίζεται στο σχήμα αυτό μόνο ένας κλάδος, $V(1)$.

Στο Σχήμα 7 απεικονίζονται με κουκίδες οι αποσταφθημένες τιμές του ύγκους εισροής V και συγγρότος, οι τιμές για επίπεδα πιθανότητας $\alpha = 0.8$, $\alpha = 0.9$ και $\alpha = 1$. Διαπιστώνεται ότι υπάρχει μια σταθερή ανησυχημένη διαφορά ίση με 0.1588, μεταξύ των αποσταφθημένων τιμών και των τιμών για επίπεδο πιθανότητας $\alpha = 1$, ενώ το ανησυχημένο μέσο τετραγωνικό αφάλλημα είναι ίσο με $rms=0.025$.

Επίσης, διαπιστώνεται ότι οι αποσταφθημένες τιμές του εισρόντος ύγκους νερού βρίσκονται μεταξύ των τιμών για $\alpha = 0.8$ και πολύ κοντά στο δεξιό κλάδο για επίπεδο πιθανότητας $\alpha = 0.9$.

5. ΣΥΜΠΕΡΑΣΜΑΤΑ

Η θεωρία της ασαφούς λογικής δίνει τη δυνατότητα για την εξαγωγή σαφών συμπερασμάτων κατά τη μελέτη ορισμένων φυσικών προβλημάτων, στα οποία τα δεδομένα των φυσικών παραμέτρων (στην παρούσα περίπτωση της υδροφιλίς αγαγμοτήτας κοροειδούς, K_r και του αποτελεσματικού πορώδους, n_r) παρουσιάζονται με μεγάλη ή μικρή ασφάλεια. Σημειώνεται ότι η εφαρμογή στις περιπτώσεις αυτές της κλασικής θεωρίας των πραγματικών αριθμών θα οδηγούσε σε εντελώς εσφαλμένα αποτελέσματα.

6. ΒΙΒΛΙΟΓΡΑΦΙΑ

Μκαλλάς, Α., 2007. Χρήση των ασαφών κανόνων στη διαχείριση υδατικών πόρων- Ἐφαρμογή στην υδρολογική λεκάνη Βόλης. Διδακτορική Διατριβή, Τμήμα Αγρονομίας και Τοπογράφων Μηχανικών. ΑΠΘ, Νέα Αθήνα, 276 σελ.

Μπίμπας, Η., 1998. Αριθμητική διερεύνηση της διάσπορας ρυπαντών με προσεγγιστική θεωρία. Διδακτορική Διατριβή, Τμήμα Πολυτεχνικών Μηχανικών, ΑΠΘ, Νέα Αθήνα, 130 σελ.

Τερζόπουλος, Σ. και Καραμούζης, Δ., 1985. Συγγραφέας Γεωργικών Εκδοτών. Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη, 359 σελ.

Τσιμόπουλος, Χ. και Γιαννόπουλος, Σ., 1998. Μη Μόνη Κίνηση τον Νέρο σε Ελεύθερο Υδροφορέα με Συνθήκες Βροχής στην Επιφάνεια. Υδροτεχνικά, 8: 33-44.

Χαλκιδής, Ηρ., 2005. Εφαρμογή της Θεωρίας της Προσεγγιστικής Λογικής στους Υδάτινους Υδροφορείς. Διδακτορική Διατριβή, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ, 187 σελ.
