ΕΠΑΝΑΧΡΗΣΙΜΟΠΟΙΗΣΗ ΤΩΝ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΑΣΤΙΚΩΝ ΛΥΜΑΤΩΝ ΣΤΗΝ ΑΡΔΕΥΣΗ ΤΟΥ ΑΡΑΒΟΣΙΤΟΥ

Αθανάσιος Πανόρας1, Γεώργιος Ευγενίδης1, Σοφία Μπλαδενοπούλου1
Βασίλειος Μελίδης1, Αλέξανδρος Δούτσινης2, Ιορδάνης Σαμαράς1
Αντώνιος Ζάραγκας1, Γεώργιος Πανόρας1

1 Εθνικό Ίδρυμα Αγροτικής Έρευνας, 2 ΠΕΓΕΑΛ Θεσσαλονίκης
3 Πανεπιστήμιο Αιγαίου

ΠΕΡΙΛΗΨΗ
Μελετήθηκε η επίδραση του νερού άρδευσης (επεξεργασμένα λύματα της Θεσσαλονίκης με δύο τρόπους, ενεργός άλος & χλωρίωση-δεξαμενές σταθεροποίησης) στην απόδοση του καρπού αραβοσίτου, τη φυτομάζα και το ύψος φυτών και σπάδικων. Η μεταχείριση των επεξεργασμένων αστικών λυμάτων με ενεργό άλο έδωσε απόδοση σε καρπό ελαφρά μειωμένη σε σχέση με το μάρτυρα (νερό γεώτρησης). Ανάλογα ήταν τα αποτελέσματα της φυτομάζας και του ύψους φυτών και σπάδικων. Τα αντίστοιχα αποτελέσματα που έδωσε η μεταχείριση των αστικών λυμάτων που επεξεργάσθηκαν σε δεξαμενές σταθεροποίησης δεν ήταν ικανοποιητικά λόγω υψηλής αλατίτητας. Σε ό,τι αφορά στην άρδευση με ανάλυση και σταγόνες δεν υπήρχαν σημαντικές διαφορές. Το επίπεδο των αλάτων στο έδαφος αυξήθηκε με τη χρήση των αστικών λυμάτων, ενώ Δυσμενείς επιπτώσεις από πλευράς νερορύθμισης και υγειονομικής συγκέντρωσης ξυστοστέων στο έδαφος δεν παρατηρήθηκαν. Κολοβοκτονία εντερικής πρόοδους σε αριθμό μεγαλύτερο του 1000/100ml δεν ανιχνεύθηκαν στη χλωριομένη εκροή. Στη μη χλωριωμένη εκροή των δεξαμενών σταθεροποίησης ανιχνεύθηκαν ελάχιστες συγκεκριμένες (3%).

REUSE OF RECLAIMED MUNICIPAL WASTEWATER FOR CORN IRRIGATION

Athanasios Panoras1, Georgios Evgenidis1, Sofia Bladenopoulou1
Basilios Melidis1, Alexandros Doitsinis2, Iordanis Samaras1
Antonios Zdragkas1, Georgios Panoras1

1 National Agricultural Research Foundation, 2 PEPEAL of Thessaloniki
3 Aegean University

SUMMARY
The effect of the effluent from Thessaloniki, Greece, reclaimed either by activated sludge or by stabilization ponds on field-grown corn was studied. The treatment of activated sludge effluent succeeded yield in grain-dry matter and height of corn-ears similar to the treatment of control (potable water) while the treatment of stabilization ponds effluent gave poor results due to high water salinity. No significant differences have been observed in grain yield, dry matter, height of plant and ears between furrow and drip irrigation. The use of wastewater increased the level of soil salinity while there is no any particular problem in relation to alkalinity. Trace element concentrations in the soil and plant tissues were low. The chlorinated effluent was free of fecal coliforms. Less than 3% fecal coliforms were detected in the stabilization ponds effluent.

Συζήτηση (discussion) της εργασίας αυτής (μέχρι 2 σελίδες) γίνεται δεκτή μέχρι την 28/2/07
1. ΕΙΣΑΓΩΓΗ

Είναι γνωστό ότι ποσοστό 70-90% των διαθέσιμων υδατικών πόρων παγκοσμίως χρησιμοποιείται για άρδευση γεωργικών και μη εκτάσεων (Asano, 1994). Στις ζημιές και ημέρες περιοχές, όπου ο αραβίδιστος αποτελεί μία από τις κύριες καλλιέργειες, έχει καταγραφεί σταδιακή μείωση των διαθέσιμων υδατικών πόρων (Πανώρας και Ηλιας, 1999). Κάτω από τις συνθήκες αυτές, η επαναχρησιμοποίηση των επεξεργασμένων αστικών λιμάτων (Ε.Α.Λ.) στην άρδευση γεωργικών εκτάσεων θα συμβάλλει στην εξοικονόμηση σημαντικών ποσοτήτων υδατικών πόρων. Παράλληλα θα μειωθούν οι επιρροές των συνεχούς ποσοτήτων χημικών λιπαρισμάτων, αφού τα Ε.Α.Λ. προσθέτουν θερμικά στοιχεία (N,P,K) στο έδαφος. Βασικό όμως πλεονέκτημα της χρήσης των Ε.Α.Λ. για αρδευτικούς σκοπούς είναι η προστασία των υδάτινων σωμάτων από τη ρύπανση (Oron et al., 1992; Pescod, 1992, Πανώρας, 2005). Πρέπει να τονισθεί ότι η χρήση των Ε.Α.Λ. στην άρδευση των καλλιεργειών, όπως και κάθε άλλου υδατικού πόρου, προϋποθέτει την εξοικονόμηση της αειφορίας του οικοσυστήματος, όπου γίνεται χρήση αυτών, καθώς και την προστασία της υγείας αρδευτών και καταναλωτών.

Στην Τυνησία, η διαθέσιμη ποσότητα των αστικών λιμάτων που χρησιμοποιείται στη γεωργία έχει εξελιχθεί το 215 Μm³/έτος αρδεύοντας 200.000 στρέμματα (Bazza, 2002). Ποσοστό 90% των λιμάτων της πόλης Μεξικό χρησιμοποιούνται για άρδευση των καλλιεργειών στις κοιλάδες Μεξικό και Mezquital, ενώ ταυτόχρονα εμπλουτίζονται τα υπόγεια υδροφόρα στρώματα (Anderson, 2002). Η επαναχρησιμοποίηση των αστικών λιμάτων στην άρδευση των καλλιεργειών στις Η.Π.Α. εξοικονομεί 0,76 Μm³/έτος νερού καθώς ισότιμα με την τιμή του νερού επιπλέον το 70% των Ε.Α.Λ. χρησιμοποιείται για αρδευτικούς σκοπούς (California State Water Resources Control Board, 1990). Το 72% των Ε.Α.Λ. του Ισραήλ αξιοποιείται στη γεωργία και αποτελεί το 40% των συνολικών ποσοτήτων νερού που χρησιμοποιούνται στην άρδευση (Shelef and Halperin, 2002).

Στη χώρα μας, άμεση χρήση Ε.Α.Λ σε επίπεδο ευρέως εφαρμογής στην Ελλάδα δε γίνεται(Tsagarakis et al., 2004). Η έμμεση όμως χρήση μέσω των νερών των ποταμών και των λιμνών που αποτελούν αποδέκτες αστικών λιμάτων είναι σύνθετη στην Ελλάδα (Asano, 1994; Πανώρας και Ηλιας, 1999; Tsagarakis et al., 2004; Πανώρας, 2005). Μέγαρα υπάρχουν 350 κεντρικές μονάδες επεξεργασίας αστικών λιμάτων με συνολικά παροχή 1.45 Μm³/έτος (Angelakis et al., 2002). Μεγάλο μέρος των εκροών αυτών μπορεί να αξιοποιηθεί από τη γεωργία με σημαντικά οικονομικά και περιβαλλοντικά οφέλη (Oron et al., 1980; Πανώρας, 2005).

Σκοπός της εργασίας αυτής ήταν η διερεύνηση της δυνατότητας επανα-
χρησιμοποίησης των Ε.Α.Λ. της πόλης Θεσσαλονίκης (170.000 3m³/έτος) στην άρδευση του αραβικού του καλλιεργείται στην ομίχλη πεδιάδα, αντί να καταλήγει η εκροή αυτή στο Θερμαϊκό κόλπο κατά την αρδευτική περίοδο. Συγκεκριμένα, μελετάται η επιδράση των λιμάτων της Θεσσαλονίκης, μετά από επεξεργασία είτε με ενεργό υδ & χλωρίαση είτε με δεξαμενές σταθεροποίησης, στο φυτό και στο έδαφος, αρδεύοντας με κλειστά οριζόντια αυλάκια και σταλακτηρίνους αγχούς. Τεντάχρονα, αξιολογείται εάν υπάρχει κίνδυνος για την έμφραξη των σταλακτήρων ή για την υγεία των αρδευτών και των καταναλωτών.

Τα αποτελέσματα της έρευνας αυτής μπορούν να επεκταθούν στο σύνολο της χώρας, αφού ο αραβίδατος είναι μία από τις βασικές ελληνικές καλλιέργειες που καταλαμβάνει το 18.5% της συνολικά αρδευόμενης έκτασης αυτής και έχει μεγάλες απαιτήσεις σε νερό, ιδιαίτερα κατά την κρίσιμη περίοδο της ανθοφορίας (Ευγενίδης κ.
α., 2002). Η χρήση των Ε.Α.Λ. στην άρδευση του αραβοσίτου θα εξουκονομήσει σημαντικές ποσότητες φρέσκου νερού και χημικών λιπασμάτων, ενώ ταυτόχρονα θα ελαχιστοποιεί την υποβάθμιση των επισανειακών νερών που αποτελούν αποδέκτες των λιμένων αυτών.

2. ΥΛΙΚΑ ΚΑΙ ΜΕΘΟΔΟΙ

Ο πειραματικός αγρός εγκαταστάθηκε την Ανοιξιά του 2000 στην περιοχή ζώνη του Γαλλικού ποταμού δίπλα στις εγκαταστάσεις επεξεργασίας των λιμένων της Θεσσαλονίκης και καταλαμβάνει έκταση 2,5 στρεμμάτων. Το έδαφος μέχρι το βάθος των 90 cm ήταν ομοιόμορφο και η κοικομετρία του σύσταση ήταν 50,1% άμμος, 43.3% υός και 6.6% άργηλος.

Διερευνήθηκαν δύο παράγοντες: η ποιότητα του νερού και η μέθοδος άρδευσης. Η πειραματική διάταξη ήταν σχετικά με έξι επαναλήψεις, τρεις ποιότητες νερού και δύο μεθόδους άρδευσης. Κάθε πειραματικό τεμάχιο αποτελείτο από τέσσερις σειρές αραβοσίτου μήκους 7m, ισοποχής 80cm και απόστασης των φτωχών επί της σειράς 20cm (περίπτωση 5.400 φυτά/στρεμμά). Για τη λήψη των πειραματικών τεμαχίων, και προκειμένου να είναι ιδιαίτερα αυτόνομα, πάρθηκε υπόψη η υφιστάμενη συγκέντρωση N, P και K στο έδαφος καθώς τεμαχίου πριν από τη σπορά αλλά και στα αρδευτικά νερά. Το υψίδιο που χρησιμοποιήθηκε ήταν ΔΙΑΣ με διάκτυ προιόντας F.A.O. 750 (Ινστιτούτο Στιφηρών, 1999). Σπάρθηκε στις 3 Μαΐου και υποκομίσθηκε στις 4 Σεπτεμβρίου.

Σε ό,τι αφορά στο αρδευτικό νερό, χρησιμοποιήθηκαν τρεις ποιότητες: a) λόγω της Θεσσαλονίκης που υποβλήθηκαν σε φυσική επεξεργασία μέσω σειρών δεξαμενόν σταθεροποίησης, αποθήκευσης σε δεξαμενή και διέλευσης της εκροής από φίλτρο άμμου (Δ.Σ.) β) λόγω της Θεσσαλονίκης που υποβλήθηκαν σε μηχανική επεξεργασία - ενεργός υός και χλωρίση (E.I.&X.) γ) πόσιμο νερό από γεώτρηση της E.Y.A.Α. Α.Ε. ως μάρτυρις (Μ). Κατά τη διάρκεια της αρδευτικής περιόδου και σε κάθε άρδευση γινόταν ελέγχος των ποιοτικών χαρακτηριστικών των νερών.

Σχετικά με τις μεθόδους άρδευσης ενδέχεται να 1) κλειστά οριζόντια αυλάκια (Α) και ii) σταλακτηρόφορο αγαγός (Σ), γιατί ε μεν πρώτος τρόπος άρδευσης εφαρμόζεται σε όλες αρδευτικές δικτύα της Θεσσαλονίκης λειτουργούν με βαρότητα, α δε δεύτερος έχει αρχής να επαναστηθεί για λόγους καλύτερης αξιοποίησης των συνεχών μειώματος ποσοτήτων νερού που διατίθενται για άρδευση.

Τα νερά παραχωρούνται στην κεφαλή των πειραματικών τεμαχίων με κλειστό σοληνώτο δίκτυο 76.2mm και διανύονται στα αυλάκια με πλαστικός σοληνίδικους διαμέτρου 2.54mm. Κάθε έξοδος προς τα αυλάκια διέθετε ράνα ώστε να είναι δυνατή η ρύθμιση της παροχής με σκοπό τη μέγιστη ομοιομορφία κατανομής του νερού στον πειραματικό αγρό. Το δίκτυο περιελάμβανε όλα τα απαραίτητα εξαρτήματα για τον αποτελεσματικό και ακριβή χειρισμό του νερού.

Στην άρδευση με σταγόνες τοποθετήθηκαν σταλακτηρόφορο αγαγός διαμέτρου 20mm σε κάθε γραμμή φτωχών, ισοποχής 80cm, με ενσωματωμένο σταλάκτη τύπου GR. Η πίεση λειτουργίας, η ισορροπία και η παροχή των σταλακτηρών ήταν 10 m, 0.33 m και 3.9 l/h αντίστοιχα. Σε κάθε τρία από ταδιακτηρόφορα αγαγούς τοποθετήθηκαν διακόπτες ροής, φίλτρο σιτάς (120 mesh), υδρομετρήτης ξηρού τύπου Qnom=2.5m³/h και ρυθμιστής πίεσης 6 bar. Στο μεσαίο σταλακτηρό κάθε τρία διακτήτες τοποθετήθηκαν μανόμετρα γλυκερίνης 4 bar στην αρχή και στο τέλος αυτού. Όταν να παρακολουθούνται πιθανές μεταβολές στη διαφορά πίεσης μεταξύ των άκρων αυτού με
Πίνακας 1. Ποσότητα νερού που χορηγήθηκε στον πειραματικό αγρό αραβοσίτου

<table>
<thead>
<tr>
<th>Δ.Σ. + M</th>
<th>E.I.&X + M</th>
<th>M²</th>
<th>Βροχή</th>
<th>Εδαφική υγρασία</th>
<th>Σύνολο</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³/στρ.</td>
<td>m³/στρ.</td>
<td>m³/στρ.</td>
<td>m³/στρ.</td>
<td>m³/στρ.</td>
<td>m³/στρ.</td>
</tr>
<tr>
<td>649+46</td>
<td>649+46</td>
<td>695</td>
<td>52.4</td>
<td>75.6</td>
<td>823</td>
</tr>
</tbody>
</table>

1. Δ.Σ. = Αστικά λόματα που επεξεργάσθηκαν σε δεξιομείνες σταθεροποίησης
2. E.I.&X = Αστικά λόματα που επεξεργάσθηκαν με ενεργό υλό & χλωρίωση
3. M = Νερό γεώτρησης

Οι παράμετροι που διερευνήθηκαν σε σειρά δειγμάτων εδάφους, νερού και φυτικού ύλικου ήταν οι εξής:

Νερό
- **Βιοχημική ζήτηση οξείας (BOD₅), χημική ζήτηση οξείας (COD), ολικά αιωρούμενα στερεά (TSS), pH, EC, Na, Ca, Mg, SAR, διορθωμένο SAR, B, N (NH₃-N, NO₃-N, NO₂-N, Kjeldahl N), P, B, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn. Οι μικροβιακές αναλύσεις περιλαμβάνουν κολοβακτηριδία (ολικά - εντερικής προέλευσης) και σαλμονέλλες.

Εδαφος
- Δεπτομερής δειγματοληψία διεξήχθη πριν από τη σπορά και μετά τη συγκομιδή μέχρι βάθος 90cm. Οι χημικές αναλύσεις πριν τη σπορά αφορούσαν σε pH πάστας, ECE, ανταλλάξιμο Na, CEC καθώς και σε N, P, K για τη λίπανση των τεμαχίων. Μετά τη συγκομιδή οι χημικές αναλύσεις αφορούσαν σε pH πάστας, ECE, ανταλλάξιμο Na, CEC, B, Cr, Cu, Zn, Mn, Fe, Pb, Cd, Ni. Κατά την εγκατάσταση του πειραματικού αγρού έγινε δειγματοληψία εδάφους στα βάθη 0-30, 30-60 και 60-90 cm για τον
προσδιορισμό της κοκκομετρικής σύστασης, της υδατοκανόνητας, του σημείου μόνιμης μάρανσης και του φαινόμενου ειδικού βάρους.

Φυτικοί ιστοί

Έγιναν αναλύσεις στο σύνολο της φυτικής μόζας και στον καρπό για τον προσδιορισμό ορισμένων μακροστοιχείων (P, K) και μικροστοιχείων (B, Mn, Zn, Fe, Cu).

3. ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Η αξιολόγηση των ποιοτικών χαρακτηριστικών των επεξεργασμένων λυμάτων της Θεσσαλονίκης (Πίνακες 2,3) με βάση τα διεθνώς αποδεκτά κριτήρια καταλληλότητας νερών για άρδευση (Ayers and Westcot, 1985; Page and Chang, 1985; Nakayama and Bucks, 1986; Maas, 1990; Benton et al., 1991; State of California, 2000; KYA 141937, 2005; WHO, 2005) δείχνει ότι τα λύματα αυτά μπορούν να αποτελέσουν

Πίνακας 2. Ποιοτικά χαρακτηριστικά των νερών άρδευσης\(^1\)

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Μονάδες</th>
<th>Δ.Σ.</th>
<th>E.I.&X.</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD(_3)</td>
<td>mgO(_2)/l</td>
<td>25. ± 12.0</td>
<td>35.1 ± 19.8</td>
<td>-</td>
</tr>
<tr>
<td>COD</td>
<td>mgO(_2)/l</td>
<td>111.9 ± 24.3</td>
<td>135.7 ± 69.5</td>
<td>-</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>48.1 ± 15.0</td>
<td>43.4 ± 19.3</td>
<td>8.6 ± 4.1</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7.9 ± 0.25</td>
<td>7.7 ± 0.18</td>
<td>7.4 ± 0.17</td>
</tr>
<tr>
<td>EC</td>
<td>dS/m</td>
<td>5.9 ± 0.36(^2)</td>
<td>4.0 ± 1.0(^0)</td>
<td>1.1 ± 0.06</td>
</tr>
<tr>
<td>SAR</td>
<td></td>
<td></td>
<td>1.2 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>διαρθμ. SAR</td>
<td></td>
<td>16.9 ± 1.3</td>
<td>14.2 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>mg/l</td>
<td>0.07 ± 0.18</td>
<td>0.57 ± 0.07</td>
<td>0.12 ± 0.05</td>
</tr>
<tr>
<td>Cd</td>
<td>μg/l</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/l</td>
<td><0.08</td>
<td><0.08</td>
<td><0.08</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/l</td>
<td><0.08</td>
<td><0.08</td>
<td><0.08</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/l</td>
<td><0.13</td>
<td><0.18</td>
<td><0.12</td>
</tr>
<tr>
<td>Pb</td>
<td>μg/l</td>
<td><0.45</td>
<td><0.45</td>
<td><0.45</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/l</td>
<td><0.21</td>
<td><0.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Ni</td>
<td>mg/l</td>
<td><0.14</td>
<td><0.14</td>
<td><0.14</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/l</td>
<td><0.1</td>
<td><0.13</td>
<td><0.07</td>
</tr>
<tr>
<td>Νολικό(^4)</td>
<td>mg/l</td>
<td>26.3</td>
<td>32.4</td>
<td>10.7(^1)</td>
</tr>
<tr>
<td>Ρολικό</td>
<td>mg/l</td>
<td>5.9</td>
<td>7.1</td>
<td>0.16</td>
</tr>
<tr>
<td>Κ</td>
<td>mg/l</td>
<td>54.1</td>
<td>39.7</td>
<td>3.4</td>
</tr>
</tbody>
</table>

1. Ο συνολικός αριθμός των δειγμάτων νερού κατά την αρδευτική περίοδο ήταν 5.
2. Η τιμή της EC της μεταχείρισης Δ.Σ. συνήθως είναι κάτω 40-50% μεγαλύτερη από εκείνη της μεταχείρισης E.I.&X., λόγω εξάτμισης στις δεξιομενές σταθεροποίηση.
3. Η τιμή της EC της μεταχείρισης E.I.&X. κυμαίνεται από 1.5-2.0 dS/m. Η καταγραφέσα τιμή των 4.0 dS/m οφείλεται σε πρόσκαιρη είσοδο θαλασσινού νερού στο αποχετευτικό σύστημα που αντιμετωπίζεται από την E.Y.A.Θ. A.E.
4. Η συγκέντρωση του Ν στο Μάρτυρα (νερό γεώτρησης) είναι υψηλή λόγω της έντονης δραστηριότητας των βιοτυπικών στη γεωτρητική περιοχή.
5. Νολικό είναι το άθροισμα των (NO\(_3\)-N+NH\(_4\)-N+Opq-N)
Πίνακας 3. Μικροβιολογικά χαρακτηριστικά των νερών άρδευσης

<table>
<thead>
<tr>
<th>Μικρο-</th>
<th>Αρ.μ/100ml</th>
<th>%</th>
<th>Αρ.μ/100ml</th>
<th>%</th>
<th>Αρ.μ/100ml</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ολικά</td>
<td><3-100</td>
<td>44.1</td>
<td><3-100</td>
<td>84.4</td>
<td><3-100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100-1000</td>
<td>47.1</td>
<td>100-1000</td>
<td>6.3</td>
<td>100-1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>1000</td>
<td>8.8</td>
<td>>1000</td>
<td>6.3</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>Εντερικά</td>
<td><3-100</td>
<td>58.8</td>
<td><3-100</td>
<td>87.5</td>
<td><3-100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100-1000</td>
<td>38.2</td>
<td>100-1000</td>
<td>12.5</td>
<td>100-1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>1000</td>
<td>3.0</td>
<td>>1000</td>
<td>-</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>Σάλμια-</td>
<td>απουσία</td>
<td></td>
<td>απουσία</td>
<td></td>
<td>απουσία</td>
<td></td>
</tr>
<tr>
<td>νέλλες</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

μια νέα πηγή νερού για την άρδευση των αραβισίτων είτε αμυγδάς είτε με ανάμιξη με νερά των ποταμών Λουδία και Αζιού. Η μικροχρόνια όμως χρήση των νερών αυτών πρέπει να γίνεται με τις προτεινόμενες ποιότητες που προβλέπεται η προαναφερθείσα διεθνής βιβλιογραφία, με ή χωρίς ανάμιξη με τα νερά των ποταμών Αζιού και Λουδία, για να αποφεύγονται προβλήματα μειωμένης παραγωγής ή/και δημιουργία εδαφικής αλατότητας.

Η ανάλυση παραλλακτικότητας (Πίνακας 4) δείχνει ότι, τα μέσα τετράγωνα σφάλματος δίνουν στατιστικά σημαντική τιμή του F για την ποιότητα νερού, τόσο στην απόδοση όσο και σε όλα τα χαρακτηριστικά που μετρήθηκαν. Αντίθετα, για τη μέθοδο άρδευσης, οι τιμές του F ήταν όλες μη σημαντικές. Υπήρξαν ακόμη και κάποιες σημαντικές αλληλεπιδράσεις μεταξύ ποιότητας νερού και μεθόδου άρδευσης, στην ποιότητα της φυτικής μόχας και στο ύψος φυτού.

Πίνακας 4. Συνδυασμένη ανάλυση παραλλακτικότητας του πειραματικού καλαμποκιού (split-plot)

<table>
<thead>
<tr>
<th>Πηγή</th>
<th>BE</th>
<th>Μέσα τετράγωνα</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Απόδοση Kg/στρέμ.</td>
</tr>
<tr>
<td>Εκαταλήψεις</td>
<td>5</td>
<td>3807,4*</td>
</tr>
<tr>
<td>Ποιότητα Νερού</td>
<td>2</td>
<td>50636,4**</td>
</tr>
<tr>
<td>Σφαλμα 1</td>
<td>10</td>
<td>986,1</td>
</tr>
<tr>
<td>Μέθοδος Άρδευσης</td>
<td>1</td>
<td>361,0</td>
</tr>
<tr>
<td>Ποιότητα x Άρδευση</td>
<td>2</td>
<td>367,0</td>
</tr>
<tr>
<td>Σφαλμα 2</td>
<td>15</td>
<td>868,4</td>
</tr>
</tbody>
</table>

* **: Στατιστικά σημαντική τιμή του F για πιθανότητα 5 και 1% αντίστοιχα.

Πλέον συγκεκριμένα, υπάρχουν σημαντικές διαφορές μεταξύ Ε.Α.Δ. και μάρτυρα σε ότι αφορά στην απόδοση σε καρπό και φυτομάζα καθώς και στο ύψος φυτού και σπάδικα σε σχέση με την ποιότητα του νερού, με το μάρτυρα να επιτυγχάνει μεγαλύτερη απόδοση σε καρπό και φυτομάζα καθώς και μεγαλύτερο ύψος φυτού και σπάδικα (Πίνακας 5). Βέβαια, η επιτυχία απόδοση σε καρπό με τη χρήση της μεταχείρισης Ε.Ι.&Χ. (1126kg/στρέμμα) ήταν παραπλάνη της απόδοσης του μάρτυρα.
(1264 kg/στρέμμα). Σημαντική μείωση της ακόδοσης σε καρπο παρατηρήθηκε στην μεταχείριση Δ.Σ. (651 kg/στρέμμα) και οφείλεται στην ιδιαίτερα υψηλή τιμή της ηλεκτρικής αγωγομόντασης των νεφών αυτών (Maas, 1990). Για τον ίδιο λόγο η απόδοση σε φυτομάζα ήταν μικρότερη κατά 129 kg/στρέμμα και τα ύψη φυτών και σπάδικα χαμηλότερα κατά 54 και 36επι αντίστοιχα. Η θετική συσχέτιση απόδοσης καρπού και φυτομάζας σε σχέση με το ύψος των φυτών είναι αναμενόμενη σύμφωνα με τους γενεαλότατους του αραβόσιτου. Σε ελάχιστες όμως περιπτώσεις έχει παρατηρηθεί αρνητική ή ακόμη και καμία συσχέτιση (Hallauer and Sears, 1969; Stuber et al., 1969; Alvaro and Cramp, 1972).

Σε σχέση με τις δύο μεθόδους άρδευσης δεν παρατηρήθηκαν σημαντικές διαφορές τόσο στην ακόδοση καρπού και φυτομάζας όσο και στο ύψος φυτών και σπάδικα.

Πίνακας 5. Στατιστική επεξεργασία ακόδοσης καρπού και φυτικής μάζας καθώς και ύψους φυτών-σπάδικα σε αραβόσιτο "Δίας"

<table>
<thead>
<tr>
<th>Επιμίσθιο</th>
<th>Ακόδοση καρπού kg/στρέμμα</th>
<th>Φυτική μάζα kg/στρέμμα</th>
<th>Υψός φυτών cm</th>
<th>Υψός σπάδικα cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ποιότητα νεφών</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Σ.</td>
<td>651 γ</td>
<td>281 γ</td>
<td>168 γ</td>
<td>84 γ</td>
</tr>
<tr>
<td>E.I.&X.</td>
<td>1126 β</td>
<td>335 β</td>
<td>194 β</td>
<td>98 β</td>
</tr>
<tr>
<td>M</td>
<td>1264 α</td>
<td>410 α</td>
<td>222 α</td>
<td>110 α</td>
</tr>
<tr>
<td>Μέθοδος άρδευσης</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Α</td>
<td>1046 α</td>
<td>339 α</td>
<td>194 α</td>
<td>96 α</td>
</tr>
<tr>
<td>Σ</td>
<td>982 α</td>
<td>345 α</td>
<td>195 α</td>
<td>99 α</td>
</tr>
<tr>
<td>CV(%)</td>
<td>13.4</td>
<td>12.7</td>
<td>5.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Μέσοι όροι που χαρακτηρίζονται με τα ίδια γράμματα δεν διαφέρουν στατιστικά σημαντικά σύμφωνα με το κριτήριο Duncan (P5%) για κάθε μία βιολογική παράμετρο

Η ποσότητα των θρεπτικών στοιχείων που προστέθηκε στο έδαφος από τη χρήση των E.A.L. φαίνεται στον Πίνακα 6. Οι Κατασκευών της ια. (1999) αναφέρουν ότι οι ανάγκες των υβρίδιων για παραγωγή 1000 κλάδων καρπού είναι 9.5, 3.0 και 14.6 kg/στρέμμα Ν, Ρ και Κ αντίστοιχα. Αυτό σημαίνει ότι στα τεμάχια που αρδέθηκαν με τη χρήση των νεφών E.I.&X. (απόδοση 1126 kg/στρέμμα), οι ποσότητες που προστέθηκαν αποτελούν το 98.5% των αναγκών σε Ν, και υπερκαλώποντας σε ανάγκες των φυτών σε Ρ και Κ. Η μέση λίπανση που προστίθεται επίσης στην καλλιέργεια αραβόσιτου από τους ογρότες είναι σχεδόν διπλάσιο των αναγκών που αναφέρονται από τα παραπάνω ερευνητές. Το γεγονός αυτό είχε σαν αποτέλεσμα την εξουσιονόμηση αντίστοιχων ποσοτήτων χημικών λιπασμάτων με θετική επίπτωση στη μείωση του κόστους παραγωγής και στην προστασία του περιβάλλοντος, αφού αυτές οι θρεπτικές ουσίες θα ενίσχυσαν τα φαινόμενα εντροφιομονή των υδάτων αποδεκτών, ιδιαίτερα τους θερμούς μήνες.

Σε ότι αφορά στην ηλεκτρική αγωγομόνταση των εκχυλισμάτων κορεσμού (ECE), η χρήση των E.A.L., ιδιαίτερα της μεταχείρισης Δ.Σ., αυξάνει σημαντικά την τιμή της καρύδας στο βάθος των 0-30cm (Πίνακας 7). Βέβαια, αύξηση της ECE παρατηρήθηκε και στην περίπτωση του μάρτυρα, όπως αναμένεται σε κάθε εφαρμογή αρδευτικού νεφού στο έδαφος, οπουσδήποτε συγκέντρωσης ECE. Επίσης, αύξηση της ECE παρατηρήθηκε και στις δύο μεταχείρισεις άρδευσης, με το συλλαμάτι να εμφανίζουν με-
Πίνακας 6. Ποσότητες αζώτου, φωσφόρου και καλίου που προστέθηκαν στο έδαφος από τη χρήση των νερών άρδευσης

<table>
<thead>
<tr>
<th>Θερμικά στοιχεία</th>
<th>Ποσότητες N, P, K σε kg/στρέμμα ανά ποσότητα νερού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ολική ποσά</td>
<td>Α.Δ.</td>
</tr>
<tr>
<td>N</td>
<td>17.7</td>
</tr>
<tr>
<td>P</td>
<td>3.8</td>
</tr>
<tr>
<td>K</td>
<td>35.3</td>
</tr>
</tbody>
</table>

γαλύτερη ECh κατά 38.22% έναντι της άρδευσης με σταγόνες λόγω αυξημένης συγκέντρωσης αλάτων στον αμυγδαλιών. Η αυξητική τάση των τιμών της ECh μετά την εφαρμογή των E.A.L. καθιστά αναγκαίο τον έλεγχο των αλάτων σε τακτά χρονικά διαστήματα για την αποφυγή δημιουργίας αλατούχων εδαφών και την εφαρμογή εκπλήσσων. Σε κάθε περίπτωση όμως πρέπει η EYΑΘ Α.Ε. να ελαχιστοποιήσει την είσοδο θαλασσινού νερού στο δίκτυο αποχέτευσης. Διαφορετικά, τόσο η ανάμιξη της επεξεργασμένης εκροής με νερά των ποταμών Αξιού και Λουδιά (KYA 141937, 2005) όσο και ειδικές γεωργικές φροντίδες καθίστανται επιβεβλημένες πρακτικές.

Πίνακας 7. Σύγκριση τιμών της ECh και του ESP του εδάφους πριν τη σπορά και μετά τη συγκομιδή του αραβικού ανά 30cm

<table>
<thead>
<tr>
<th>Μεταχείρισης</th>
<th>Τιμές πριν τη σπορά</th>
<th>Τιμές πριν τη σπορά</th>
<th>Τιμές μετά τη σπορά</th>
<th>Τιμές μετά τη σπορά</th>
<th>Ποσοσταία μεταβολή των αρχικών τιμών</th>
<th>% αρχικής τιμής ECh</th>
<th>% αρχικής τιμής ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metacharisis</td>
<td>ECh</td>
<td>ESP</td>
<td>ECh</td>
<td>ESP</td>
<td>% αρχικής τιμής ECh</td>
<td>% αρχικής τιμής ESP</td>
<td></td>
</tr>
<tr>
<td>Ποσότητα νερού</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Σ. X 0-30cm</td>
<td>1.63</td>
<td>17.86</td>
<td>6.21</td>
<td>16.98</td>
<td>281.6</td>
<td>-4.9</td>
<td></td>
</tr>
<tr>
<td>Δ.Σ. X 30-60cm</td>
<td>5.81</td>
<td>2016</td>
<td>7.25</td>
<td>17.20</td>
<td>24.7</td>
<td>-14.7</td>
<td></td>
</tr>
<tr>
<td>Δ.Σ. X 60-90cm</td>
<td>6.60</td>
<td>18.88</td>
<td>8.39</td>
<td>14.77</td>
<td>27.3</td>
<td>-7.0</td>
<td></td>
</tr>
<tr>
<td>Ε.Ι.&Χ. X 0-30cm</td>
<td>1.49</td>
<td>15.78</td>
<td>4.29</td>
<td>17.09</td>
<td>187.8</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Ε.Ι.&Χ. X 30-60cm</td>
<td>4.16</td>
<td>15.62</td>
<td>6.38</td>
<td>18.44</td>
<td>53.4</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>Ε.Ι.&Χ. X 60-90cm</td>
<td>7.96</td>
<td>21.54</td>
<td>8.16</td>
<td>22.32</td>
<td>2.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Μ Χ 0-30cm</td>
<td>0.85</td>
<td>9.32</td>
<td>1.34</td>
<td>7.08</td>
<td>56.7</td>
<td>-24.0</td>
<td></td>
</tr>
<tr>
<td>Μ Χ 30-60cm</td>
<td>3.62</td>
<td>9.83</td>
<td>2.06</td>
<td>10.05</td>
<td>-43.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Μ Χ 60-90cm</td>
<td>2.68</td>
<td>14.73</td>
<td>3.65</td>
<td>18.18</td>
<td>36.0</td>
<td>23.5</td>
<td></td>
</tr>
</tbody>
</table>

Μέθοδος άρδευσης

<table>
<thead>
<tr>
<th>Μέθοδος άρδευσης</th>
<th>Τιμές πριν τη σπορά</th>
<th>Τιμές πριν τη σπορά</th>
<th>Τιμές μετά τη σπορά</th>
<th>Τιμές μετά τη σπορά</th>
<th>% αρχικής τιμής ECh</th>
<th>% αρχικής τιμής ESP</th>
</tr>
</thead>
</table>
Σχετικά με τον κίνδυνο νατρίωσης του εδάφους, οι τιμές του ESP δείχνουν ότι δεν υπάρχει πρόβλημα σχετικά με την ποιότητα των Ε.Α.Λ. και με το βάθος του εδάφους (Πίνακας 7). Παράλλα αυτά, συνιστάται έλεγχος της πορείας της τιμής του ESP ή του SAR του εδάφους σε τακτά χρονικά διαστήματα.

Οι συγκεντρώσεις των ιχνοστοιχείων στο έδαφος (Πίνακας 8) καθώς και οι συγκεντρώσεις μακρο και μικροστοιχείων στη φυτική μάζα και στον καρπό (Πίνακας 9) ήταν χαμηλές σύμφωνα με τα δεδομένα της χρήσης στις επαγγελματικές περιπτώσεις (Page and Chang, 1985; Benton et al. 1991) παρόλο που γίνεται χρήση των νερών αυτών στα ιδία πειραματικά τεμάχια από το 1996 για άρδευση άλλων καλλιεργειών. Το γεγονός αυτό οφείλεται στη χαμηλή συγκέντρωση των ιχνοστοιχείων αυτών στα Ε.Α.Λ. και εξασφαλίζει τη μικροχρόνια χρήση των νερών αυτών για αρδευτικούς σκοπούς. Παρόλα αυτά συνιστάται έλεγχος συγκέντρωσης των ιχνοστοιχείων αυτών στο έδαφος σε αραιά αλλά τακτά χρονικά διαστήματα.

Πίνακας 8. Συγκέντρωση ιχνοστοιχείων στο έδαφος

<table>
<thead>
<tr>
<th>Μεταχειρίσεις</th>
<th>Β (mg/l)</th>
<th>Cr (mg/l)</th>
<th>Cu (mg/l)</th>
<th>Zn (mg/l)</th>
<th>Mn (mg/l)</th>
<th>Fe (mg/l)</th>
<th>Pb (mg/l)</th>
<th>Cd (mg/l)</th>
<th>Ni (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ.Σ.</td>
<td>0.83</td>
<td>0.12</td>
<td>1.9</td>
<td>1.6</td>
<td>8.3</td>
<td>16.4</td>
<td>3.1</td>
<td>0.10</td>
<td>0.31</td>
</tr>
<tr>
<td>Ε.Ι. & Χ.</td>
<td>0.80</td>
<td>0.13</td>
<td>2.4</td>
<td>2.3</td>
<td>9.7</td>
<td>17.7</td>
<td>3.0</td>
<td>0.08</td>
<td>0.47</td>
</tr>
<tr>
<td>Μ</td>
<td>0.47</td>
<td>0.15</td>
<td>1.8</td>
<td>2.2</td>
<td>8.5</td>
<td>14.5</td>
<td>2.7</td>
<td>0.10</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Πίνακας 9. Συγκέντρωση μακρο και μικροστοιχείων στη φυτική μάζα και στον καρπό

<table>
<thead>
<tr>
<th>Μεταχειρίσεις</th>
<th>P (mg/l)</th>
<th>K (mg/l)</th>
<th>B (mg/l)</th>
<th>Mn (mg/l)</th>
<th>Zn (mg/l)</th>
<th>Fe (mg/l)</th>
<th>Cu (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυτική μάζα</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Σ.</td>
<td>6.38</td>
<td>13.98</td>
<td>40.1</td>
<td>139.1</td>
<td>15.0</td>
<td>121.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Ε.Ι. & Χ.</td>
<td>5.73</td>
<td>13.70</td>
<td>33.8</td>
<td>123.1</td>
<td>17.6</td>
<td>122.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Μ</td>
<td>2.94</td>
<td>9.27</td>
<td>18.5</td>
<td>99.0</td>
<td>26.4</td>
<td>129.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Καρπός</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Στο μέσο της αρδευτικής περιόδου</td>
<td>0.19</td>
<td>0.37</td>
<td>14.08</td>
<td>4.81</td>
<td>29.40</td>
<td>40.06</td>
<td>2.41</td>
</tr>
<tr>
<td>Δ.Σ.</td>
<td>0.19</td>
<td>0.37</td>
<td>14.95</td>
<td>4.31</td>
<td>29.32</td>
<td>39.42</td>
<td>2.77</td>
</tr>
<tr>
<td>Ε.Ι. & Χ.</td>
<td>0.18</td>
<td>0.33</td>
<td>14.11</td>
<td>4.14</td>
<td>29.74</td>
<td>31.32</td>
<td>1.24</td>
</tr>
<tr>
<td>Μ</td>
<td>0.22</td>
<td>0.31</td>
<td>12.14</td>
<td>6.36</td>
<td>31.26</td>
<td>21.48</td>
<td>0.92</td>
</tr>
<tr>
<td>Στη συγκομιδή</td>
<td>0.22</td>
<td>0.31</td>
<td>11.39</td>
<td>5.38</td>
<td>32.43</td>
<td>23.34</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Από τις μικροβιακές αναλύσεις διαπιστώθηκε ότι δεν υπάρχει κίνδυνος για την υγεία των αγροτών που χρησιμοποιούν τα νερά αυτά κατά την αρδευτική περίοδο (State of California, 2000; ΚΥΑ 141937, 2005). Ιδίως στις εκροή της μεταχείρισης Ε.Ι. & Χ., σε κανένα δείγμα της δεν ανεγερθήκαν κολομβίνητριες ορτοπλυσίμων με αριθμό
>1000/100ml (KYA 141937, 2005; WHO, 2005). Αλλά και στην εκροή της μεταχείρισης Δ.Σ., μόνο σε ελάχιστα περιστάτη δειγμάτων (3.0%) ανιχνεύθηκαν κολοβακτηρία εντερικής προέλευσης με αριθμό >1000/100ml (Πίνακας 3). Σαλμονέλλες δεν ανιχνεύθηκαν σε κανένα δείγμα αμφότερων των εκροών. Παρόλο αυτό προτείνεται συνεχής ελέγχος των εκροών και χρήση συστημάτων άρδευσης που θα αποτρέπουν την επαφή του ανθρώπου με τα νερά αυτά.

4. ΣΥΜΠΕΡΑΣΜΑΤΑ

Η αξιολόγηση των αποτελεσμάτων του πειραματικού αγωγού αραβοσίτου που αφορά στην απόδοση καρπού και φυτικής μάζας καθώς και στο ύψος φυτών και σπάδικα, σε συνδυασμό με την ποιότητα του αρδευτικού νερού και τη μέθοδο άρδευσης δείχνει ότι τα επεξεργασμένα λόγια της Θεσσαλονίκης μπορούν να χρησιμοποιηθούν στην άρδευση του αραβοσίτου που καλλιεργείται στην ομόνωμη πεδιάδα με τις προθεσμίες που αναλύθηκαν στην παραπάνω συζήτηση.

Παρόλο που ο υδατικός αυτός πόρος είναι πολύτιμος για τη γεωργία, η χρήση των νερών αυτών πρέπει να γίνεται με την καθοδήγηση των αρμόδιων φορέων διαχείρισης υδατικών πόρων.

Το βασικό μειονέκτημα της εκροής αυτής είναι οι αυξημένες τιμές ηλεκτρικής αγωγόμοντας, που δεν είναι ίδιο χαρακτηριστικό τους, αλλά συχνά συμπεριλαμβάνεται σε μερική είσοδο θαλασσινού νερού στο αποχετευτικό σύστημα της Ε.Υ.Α.Θ. Α.Ε. Η εταιρεία έχει ήδη παρέμβει στα επίμηκα τιμήματα του αποχετευτικού δικτύου, με εμφανή θετικά αποτελέσματα στη μείωση της αλατότητας της επεξεργασμένης εκροής. Απαιτείται όμως περαιτέρω μείωση της αλατότητας.

Παρόλα αυτά, μπορεί να γίνεται χρήση των λυμάτων αυτών για αρδευτικούς σκοπούς α) με ανάμιξή τους με νερά των ποταμών Αξιού και Λουδιά μέσα στις διάρκειες των αρδευτικών δικτυών της παραπάνω πεδιάδας β) με αμιγή χρήση των νερών του π. Αξιού-Λουδιά και των λυμάτων εναλλάξ, λαμβάνοντας υπόψη τα επιπλέον στάδια της καλλιέργειας γ) με αμιγή χρήση των λυμάτων.

Σχετικά με την υγεία των αρδευτών και των καταναλωτών, δεν υπάρχει κίνδυνος από την άρδευση του αραβοσίτου με τα λόγια της Θεσσαλονίκης, αυξάνοντας τον τρόπο επεξεργασίας αυτών. Η χρήση αυλητικών συστημάτων άρδευσης που ελαχιστοποιεί την επαφή των αρδευτών με τα λόγια είναι επιθυμητή. Στην περίπτωση όμως της εκροής που επεξεργάσθηκε με δεξιομενές καθιέρωσε χωρίς χλωρίωση συνιστάται επιπλέον προσοχή.
5. ΒΙΒΛΙΟΓΡΑΦΙΑ

Κ.Υ.Α. 141937, 2005. *Έγκριση περιβαλλοντικών όρων για τη διάθεση επεξεργασμένων λιμένων για άρδευση από την Ε.Ε.Α. Θεσσαλονίκης*. ΥΠ.ΠΕ.ΧΩ.Δ.Ε., ΥΠ.Υ. Κ.Α., ΥΠ.Α.Α.Τ., σ.11.

Πανώρας, Α.Γ. και Ηλίας, Α.Κ., 1999. Αρδεύση με επεξεργασμένα υγρά αστικά απόβλητα, Εκδόσεις Γιαννόδη-Γιαννόδη, Θεσσαλονίκη, σ.190.

Πανώρας, Γ., 2005. Επεξεργασμένα υγρά αστικά απόβλητα αστικής και ανατολικής περιοχής ζώνης της Θεσσαλονίκης. Διερεύνηση της δυνατότητας διάθεσης στο θερμαϊκό κόλπο ή/και επαναχρησιμοποίησης για άρδευση καλλιεργειών. Πτυχιακή Διατριβή. Πανεπιστήμιο Αιγαίου, Τμήμα Περιβάλλοντος, Μυτιλήνη, σ. 186.

